
IL-Strudel : Independence-Based Learning of
Structured-Decomposable Probabilistic Circuit Ensembles

Shreyas Kowshik1 Yitao Liang2 Guy Van den Broeck2

1Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal, India
2Department of Computer Science, University of California, Los Angeles

Abstract

Probabilistic Sentential Decision Diagrams
(PSDD) are a class of highly tractable structured-
decomposable probabilistic circuits. They provide
for closed-form parameter learning and capture
structure from data in the form of context-specific
independences. When learning mixture models
of such circuits, the Soft EM algorithm is used
for parameter learning which is highly sensitive
to initialization. These independence properties
can be a valuable source of prior information
for component initialization. We hypothesize
that if each component structure can capture
independences on disjoint sub-supports of the
data, the overall ensemble can get a boost in
performance. Through this paper, we first develop
a framework for connecting these independences
to likelihood-based structure evaluation. Using
this framework, we propose a novel algorithm to
learn a stronger mixture model by providing an
initialization strategy to enforce context-specific-
independences at the component root levels. Our
experimental results validate our approach as it
beats previous approaches on 14 out of 20 datasets.

1 INTRODUCTION

There has been an emerging interest in the area of tractable
probabilistic models. These provide for exact inference of
various probabilistic queries in tractable time, which is of
utmost importance in real-world domains such as healthcare.
A variety of tractable probabilistic models (TPMs) have
been proposed, each making different assumptions about the
data distribution and supporting a different set of tractable
queries. Recently, various forms of probabilistic circuits
(PCs) have been chosen as the target representations for
tractable learners [Poon and Domingos, 2011, Kisa et al.,

2014, Rahman et al., 2014]. In this paper, we focus on
a particular class of structured decomposable PCs called
Probabilistic Sentential Decision Diagrams (PSDDs), as
they support the most number of tractable queries [Shen
et al., 2016, Bekker et al., 2015, Khosravi et al., 2019, Choi
and Van den Broeck, 2018].

The structure of PSDDs can be learnt from data. LearnPSDD
and Strudel [Liang et al., 2017, Dang et al., 2020] are two
approaches for this. Though both algorithms can be ex-
tended to learn an ensemble model, they effectively focus
on how to learn single circuit structures. On the other hand,
ensemble models have demonstrated effectiveness in re-
ducing the overall model bias compared to a single learner
[Meila and Jordan, 2000, Schapire, 2003]. This effective-
ness has also been shown in PC representations [Rahman
and Gogate, 2016, Liang et al., 2017, Dang et al., 2020].
Parameter learning in mixture models is generally done us-
ing the Soft EM algorithm. Soft EM distributes the dataset
examples across different components by assigning a weight
to each component-example pair. Each component in a way
becomes an expert on the examples it has a higher weight
on, thus capturing a particular sub-support of the data distri-
bution. However, Soft EM is highly sensitive to the initial-
ization of its components. A bad initialization would lead to
convergence to a poor local optimum.

PSDDs induce various context-specific-independences
(CSIs), which are an important inductive bias imposed
by their structure. When learning a single model, both
LearnPSDD and Strudel start with an initial trivial struc-
ture and expand it based on local heuristics, which iter-
atively brings about a change in what context-specific-
independences are captured by a circuit. Yet, neither ex-
plicitly utilise any similar inductive bias properties in the
construction of the mixture model. We hypothesize that by
initializing mixture components that are individually ex-
panded over disjoint sub-supports of the data, one can learn
a stronger mixture model. To confirm our hypothesis, we
first provide a framework to evaluate a structure solely in
terms of the CSIs embedded in it. Inspired by it, we propose

Accepted for the 4th Workshop on Tractable Probabilistic Modeling (TPM 2021).

mailto:<shreyaskowshik@iitkgp.ac.in>?Subject=UAI TPM 2021 Paper

Sun Rbow ¬Sun .7:Sun ¬Rbow

Rain

2

.1 .9

2

1

¬Rain

1

.2 .8

(a) PSDD

Rain

Sun Rbow

2

1

(b) Vtree

Pr(Rain) = 0.2,

Pr(Sun | Rain) =
{
0.1 if Rain

0.7 if ¬Rain

Pr(Rbow | R, S) =
{
1 if Rain ∧ Sun

0 otherwise

(c) Equivalent distribution

Z

r1

...

r2

...

¬Z

M

w1 w2

(d) 2-PSDD Ensemble

Figure 1: Example PSDD and vtree for a set of conditional probabilities.

a novel algorithm to learn a strong mixture model, where
each component tries to capture a diverse set of indepen-
dences coherent with the data.

2 BACKGROUND AND NOTATION

We use upper-case letters to denote Boolean random vari-
ables. A lowercase complete instantiation x of variables X
that satisfies sentence α is denoted x |= α.

Syntax and Semantics A probabilistic sentential decision
diagram (PSDD) [Kisa et al., 2014] is a circuit representa-
tion of a joint probability distribution over Boolean random
variables. In a nutshell, a PSDD is a parameterized directed
acyclic graph as shown in Figure 1a. Each inner node alter-
nates between logical AND and OR nodes. A combination
of an OR gate with its AND inputs is called a decision node.
Every AND gate has two inputs. The left input is called as
the prime p and right the sub s for that AND gate.

Each PSDD node encodes a probability distribution over
the random variables it is defined over. These distributions
can be obtained recursively. An AND node represents a
distribution that can be factorized as a product of two distri-
butions over disjoint sets of random variables. An OR node
represents a weighted sum of distributions of its children.
This recursion terminates at the leaf nodes, which repre-
sent univariate distributions over their literals. The PSDD in
Figure 1a encodes an equivalent distribution to Figure 1c.

As mentioned earlier, the inputs to an AND node must be
defined over disjoint sets of random variables – a property
called decomposability. It is uniformly enforced throughout
a PSDD by a variable tree (vtree), a complete binary tree
where the leaves represent boolean random variables. The
internal nodes in a vtree paritition variables into those ap-
pearing in their left and right children nodes. Each PSDD
node must correspond to one vtree node, and we say that
the PSDD node is normalized for the given vtree node. Fig-
ure 1a assigns a label to each decision node based on the

vtree node it is normalized for in Firgure 1b. Every deci-
sion node n that is normalized for a vtree node v has its
primes and subs ranging over the variables in the left and
right subtrees of v respectively. The disjoint sets of random
variables in the inputs to each AND node, thus conform
to the structure imposed by the vtree, with the primes and
subs defined over the variables under the vtree nodes they
are normalized for. This uniform property across the whole
circuit is known as structured decomposability.

Each PSDD node’s induced distribution has an intricate
support where it defines a non-zero probability. This support
is denoted as the base [n] of n. In order to reach a node n
through a path, the bases of all encountered AND gates
along the path must be satisfied. The conjunction of all
such bases forms a sub-context of n. Disjunction of all the
sub-contexts of n forms the context γn of n.1

Independences PSDDs encode independences that are
context-specific. Context-specific-independences [Boutilier
et al., 1996] denote independences between variables subject
to conditioning on a propositional sentence. A PSDD circuit
captures structure in the data through the CSIs it encodes
intrinsically. There are multiple types of independences
engraved in a PSDD structure. We refer to Kisa et al. [2014]
for a detailed analysis and highlight one particular type that
we will be using for the rest of the work.

Proposition 1. (Prime-Sub Independence) For a PSDD
rooted at r, for every decision node n with prime and sub
variables X and Y and their every element (p, s)2:

Prr(xy|[p] ∧ [s] ∧ γn)

= Prn(xy|[p] ∧ [s]) = Prn(x|[p] ∧ [s]) · Prn(y|[p] ∧ [s])

= Prr(x|[p] ∧ [s] ∧ γn) · Prr(y|[p] ∧ [s] ∧ γn)

1Original PSDD semantics define contexts with respect to the
bases of primes, instead of the bases of the whole AND gates.

2Original PSDD semantics do not include the subs in the above
independence. We use modified semantics in the context of Proba-
bilistic Circuits. More details can be found in the appendix.

In other words, conditioned on the context of an AND child,
the prime and sub variables of a decision node are indepen-
dent. An example of context-specific prime-sub indepen-
dence can be obtained with reference to Figure 1a. If we
focus on the right most decision node normalized for vtree
node 2, it induces that Sun is independent from Rbow given
¬Rain ∧ ¬Rbow. This is a straightforward example for the
sake of illustration, as Rbow never occurs when ¬Rain.

Ensemble of PSDDs An ensemble of PSDDs M is a set
of tuples (ri, wi), i = 1...N where each component PSDD
ri has a component weight wi, such that ΣNi=1wi = 1. The
ensemble encodes a distribution represented as :

PrM (x) = ΣNi=1wiPrri(x)

M can be interpreted as a single PSDD having a latent
variables Z at the top [Liang et al., 2017]. An example for
a case of a 2-PSDD ensemble can be seen in Figure 1d.
Due to the latent variables being un-observable, parameter
learning inM is generally done using the soft EM algorithm.
For fixed initial component structures, the EM algorithm
iteratively updates the parameters and is guaranteed to reach
locally optimal performance for log-likelihood.

3 ENSEMBLE LEARNING

A common practice in constructing ensembles is to assign
different components to do well on different sub-supports
of the data distribution. Intuitively, soft EM tends to re-
distribute the data points among the different components,
in the form of weights assigned to them. A good initial
assignment can help the redistribution, leading to a better
overall ensemble. In the context of PSDD mixture models,
this raises the question: how to initialize these data point
assignments such that we are more confident that each com-
ponent will do well on a particular sub-support of the data
distribution (under a reasonable training time)?

Not talking about generalization for now, an optimal PSDD
mimics the training data distribution perfectly. This only
happens when the structure-induced independences conform
with the training data. This is formalized as the following.

Theorem 1. A PSDD achieves the optimal (i.e., highest
possible) training log-likelihood iff every induced prime-sub
independence (defined in Proposition 1) holds empirically
with respect to the training data.3

The above theorem provides a framework for assessing the
quality of a structure by only examining its induced indepen-
dences. The key takeaway of the theorem is that one only
needs prime-sub independence satisfaction to get an optimal
structure. The other types of PSDD induced independences
need not be tested. This is quite useful in a practical sense

3We defer its proof till the appendix.

as prime-sub independences can conveniently be tested em-
pirically.

To learn an optimal structure, one can thus try to make
structural changes to make these independences hold better.
For learning a single structure on the entire data, the vtree
is the key to deciding what prime-sub independences can be
captured. However, in learning an ensemble, one also has
the flexibility to assign different sub-supports of the data
to the different ensemble components during initialization.
This assignment can be made such that each component can
capture a different set of independences. Motivated by this
idea, we propose a novel algorithm to better initialize the
PSDD ensembles.

Initialization Strategy We start by partitioning the data
into disjoint sub-supports. A component structure is then
trained towards optimality on each such sub-support by log-
likelihood maximization. As a consequence of Theorem
1, each component structure will start to pick up indepen-
dences specific to the examples it is trained on. Since all the
sub-supports are disjoint, a diverse range of independences
can be captured across the different component structures.
We thus hypothesize that by using these component struc-
tures as the initial components of an EM based mixture
model, the ensemble can get an overall boost in perfor-
mance.

Thus the first step for initialization of component structures
boils down to finding disjoint sub-supports in the data dis-
tribution. A trivial approach to this will randomly choose
between different partitions of the dataset examples. We pro-
vide for a more informative approach backed by Theorem 1
to get disjoint sub-supports that aid component structures to
satisfy approximate root level prime sub independence.

We assume we are given a vtree learned from data that
is shared across all the components. We then seek to find
examples in the dataset such that on the dataset formed from
these examples, the variables in the two sub-trees of the vtree
root are independent. This can be realised approximately by
checking if the pairwise mutual information between the two
variable sets is less than a specified threshold. Given a single
example, the pairwise mutual information will always be
zero between any two sets of variables, and thus always be
less than the threshold. However this would lead to a trivial
partitioning of the data into unique examples. The more
the number of examples in a sub-support, the greater is the
potential to capture rich and non-trivial independences in the
data. Thus, we are interested in finding a maximal subset of
examples such that the pairwise mutual information between
prime and sub variables at the vtree root level are less than
the specified threshold.

The above problem can formally be cast as a discrete opti-
mization problem as we show below.

Optimization Problem We first introduce our notation.
Assume we are given a training data set X of N examples
and a vtree learned from X. Let B ∈ {0, 1}N denote a
bitmask for X. A bitmask is used to represent a subset of
the examples in X. It assigns to each example, a value of 0
or 1. A 1 in a bitmask denotes that the particular example
is selected in the subset. 1(B) denotes the number of 1s
in B. Let X[B] denote the actual examples selected for B.
Let F(X[B]) denote the pairwise mutual information at the
vtree root level for the examples corresponding to B and
T denote the pairwise mutual information threshold. The
optimization problem can formally be defined as :

Max
B∈[0,1]N

1(B)

subject to : F(X[B]) ≤ T

We use a genetic algorithm for solving this optimization
problem where the fitness function is the size of the can-
didate example subset 1(B). By repeating this process of
finding maximal sub-supports, we get mutually disjoint sets
of examples, which are the disjoint domains for learning our
component structures.

Any PSDD structure that is expanded over such a set of ex-
amples, has the prime sub independence holding at the root
level, by the nature of the way these examples were obtained.
This provides a better starting point than a randomly ini-
tialized set of examples to expand a structure, by explicitly
making it satisfy prime sub independence at the root level.
We expand a structure over each of the disjoint example sets
to obtain the component structures for the mixture model.

4 EXPERIMENTS

We try to answer the following question through our exper-
iments. Does using structures trained on disjoint domains
of the dataset, such that the prime sub independence holds
at the root level, really boost the overall performance of a
mixture model?

Setup For our independence metric, we have used a boot-
strapped version of pairwise mutual information, where
the dataset is sampled with replacement 20 times and the
pMI from all the datasets are averaged to obtain the final
metric. Individual structures are expanded using the single
learner from Strudel, with splitting heuristics "eFlow-vMI",
and using cloning operations as highlighted in LearnPSDD,
both with a depth of 1. For clones, the candidate with the
maximum local log-likelihood change is preferred. EM is
only used for parameter learning and the component struc-
tures are not altered. We set the number of EM-iterations to
be 20 to ensure proper convergence. Grid search was per-
formed over the number of mixture components as {7, 10}
and the number of iterations for structure expansion as
{30, 50, 150, 300}. The runs are repeated for 5 random seed

Datasets IL-Strudel Strudel-EM EM-LearnPSDD
NLTCS -6.03 -6.07 -6.03
MSNBC -6.04 -6.04 -6.04
KDD -2.12 -2.14 -2.12
Plants -13.30 -13.22 -13.79
Audio -40.22 -41.2 -41.98
Jester -52.95 -54.24 -53.47
Netflix -56.99 -57.93 -58.41
Accidents -29.86 -29.05 -33.64
Retail -10.84 -10.83 -10.81
Pumsb-Star -25.55 -24.39 -33.67
DNA -86.93 -87.15 -92.67
Kosarek -10.61 -10.7 -10.81
MSWeb -9.78 -9.74 -9.97
Book -34.12 -34.49 -34.97
EachMovie -51.92 -53.72 -58.01
WebKB -152.79 -154.83 -161.09
Reuters-52 -85.60 -86.35 -89.61
20NewsGrp. -152.24 -153.87 -161.09
BBC -253.46 -256.53 -253.19
AD -15.23 -16.52 -31.78

Table 1: Comparision of test-set log likelihoods of our
mixture model (IL-Strudel) learned by mining contexts
in the dataset with EM based ensembles of Strudel and
LearnPSDD. Our reported numbers are the average over 5
runs. Bold values indicate the best performance among all
mentioned approaches.

values for each fixed set of hyperparameters, and the aver-
aged results are reported. We use the open-source package
Juice [Dang et al., 2021] for learning the structures of the
components.

Results We have compared our mixture models to ones
obtained from two PSDD learners, namely LearnPSDD and
Strudel, when bagging is not used. Strudel initializes its
mixture components by sharing a single structure across all
components. The structure chosen is the best performing
structure obtained by a single learner on a dataset. EM is
only used for learning the mixture model parameters. EM-
LearnPSDD includes both structure and parameter learning
in different EM loops to build the ensemble. We use Strudel
as our subrountine to learn component structures over dis-
joint sub-supports of the data distribution, such that prime
sub independences approximately hold at the root level for
each component structure.

Our experimental results show that our method (IL-
Strudel4) performs at least as well as Strudel-EM and EM-
LearnPSDD on 14 out of 20 datasets; see Table 1. Moreover,
it beats them on many of the largest datasets in terms of
variables including datasets like Reuters-52, 20NewsGrp,
and AD. This shows the effectiveness of our initialization
strategy in the context of PSDD mixture models. The im-

4https://github.com/shreyas-kowshik/ILStrudel.jl

https://github.com/shreyas-kowshik/ILStrudel.jl

provement in performance on the larger datasets highlights
the fact that a lot of potential exists when it comes to cap-
turing context-specific-independence interactions between a
large number of variables.

5 CONCLUSION

Through this paper, we successfully confirm the hypothe-
sis posed at the beginning of the paper. We do this by first
proving that maximizing log-likelihood of a structure on the
training dataset is equivalent to finding a structure where
the independences implied by the structure hold empirically.
Using this, we propose a genetic algorithm based approach
to find dataset examples such that structures expanded on
such a dataset are a strong starting point for EM. Our ex-
perimental results show that using such structures learned
on disjoint examples and combining them leads to a better
overall ensemble model compared to random initialization
and expansion.

Many important questions are still left to be answered. One
would be to look at the use of 2-way mutual information
instead of pairwise mutual-information for more robust mea-
sures of independence. Since the type of independences cap-
tured depend highly on the initial vtree, a natural next step
would be to incorporate different vtrees in the above setup
and investigate their performance.

References

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche,
and Guy Van den Broeck. Tractable learning for complex
probability queries. In NIPS, December 2015.

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and
Daphne Koller. Context-specific independence in
bayesian networks. In Proceedings of the Twelfth In-
ternational Conference on Uncertainty in Artificial In-
telligence, UAI’96, page 115–123, San Francisco, CA,
USA, 1996. Morgan Kaufmann Publishers Inc. ISBN
155860412X.

YooJung Choi and Guy Van den Broeck. On robust trim-
ming of bayesian network classifiers. In Proceedings
of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18, pages 5002–5009. In-
ternational Joint Conferences on Artificial Intelligence
Organization, 7 2018. doi: 10.24963/ijcai.2018/694.

Meihua Dang, Antonio Vergari, and Guy Van den Broeck.
Strudel: Learning structured-decomposable probabilistic
circuits. In Manfred Jaeger and Thomas Dyhre Nielsen,
editors, Proceedings of the 10th International Conference
on Probabilistic Graphical Models, volume 138 of Pro-
ceedings of Machine Learning Research, pages 137–148.
PMLR, 23–25 Sep 2020.

Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Ver-
gari, and Guy Van den Broeck. Juice: A julia package
for logic and probabilistic circuits. In Proceedings of the
35th AAAI Conference on Artificial Intelligence (Demo
Track), Feb 2021.

Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Ver-
gari, and Guy Van den Broeck. On tractable computation
of expected predictions. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan
Darwiche. Probabilistic sentential decision diagrams.
Knowledge Representation and Reasoning Conference,
2014.

Yitao Liang, Jessa Bekker, and Guy Van den Broeck. Learn-
ing the structure of probabilistic sentential decision dia-
grams. Proceedings of the 33rd Conference on Uncer-
tainty in Artificial Intelligence (UAI), 2017.

Marina Meila and Michael I Jordan. Learning with mixtures
of trees. JMLR, 1:1–48, 2000.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelli-
gence, UAI’11, page 337–346, Arlington, Virginia, USA,
2011. AUAI Press. ISBN 9780974903972.

Tahrima Rahman and Vibhav Gogate. Learning ensembles
of cutset networks. In AAAI, pages 3301–3307, 2016.

Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate.
Cutset networks: A simple, tractable, and scalable ap-
proach for improving the accuracy of chow-liu trees. In
Toon Calders, Floriana Esposito, Eyke Hüllermeier, and
Rosa Meo, editors, Machine Learning and Knowledge
Discovery in Databases, pages 630–645, Berlin, Heidel-
berg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-
44851-9.

Robert E Schapire. The boosting approach to machine
learning: An overview. Nonlinear estimation and classifi-
cation, pages 149–171, 2003.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable
operations for arithmetic circuits of probabilistic models.
In NIPS, 2016.

A PROOFS

Semantics Before beginning the proofs, we highlight a
modification in PSDD semantics we use for the rest of the

proofs. The semantics we use are in the context of Proba-
bilistic Circuits that have the structured decomposability and
determinism properties, and do not specifically follow the
semantics of PSDDs. Such semantics have been highlighted
in Dang et al. [2020]. Even with this change, structured de-
composability and determinism are preserved in a structure.
The definitions used from here on are presented below for
the sake of clarity.

A decision node (p1, s1, θ1) . . . (pk, sk, θk) must be
deterministic, which means that for any single world, it
can have atmost one AND child assign a non-zero probabil-
ity to it. In other words, the worlds satisfying [pi]∧ [si]; i =
1 . . . k must be disjoint.

We define the sub-context of a node to be the set of all AND
nodes along a path to the node instead of the original PSDD
semantics of primes. The context is still a disjunction of all
the sub-contexts.

The distribution encoded by a decision node is defined as :

If n is a decision node (p1, s1, θ1), . . . , (pk, sk, θk) normal-
ized for vtree node v, and v has left variables X and right
variables Y, then

Prn(xy) = Prpi(x)Prsi(y)θi for i where xy |= [pi]∧ [si]

Using the above modifications, it can be shown that the
following porpositions hold as well :

If n is a decision node (p1, s1, θ1), . . . , (pk, sk, θk). Then
we have Prn([pi] ∧ [si]) = θi.

Consider a PSDD r and n as one of its nodes. For a feasible
context γn, Prn(.) = Prr(.|γn).

The proofs for the above two propositions follows the same
structure of the proofs as in the original PSDD paper and
we refer to Kisa et al. [2014] for the details.

Notation We highlight the notation used in proofs.

D(α) denotes the number of examples in the training dataset
that satisfy logical sentence α.

We assume the presence of a scope function φ that maps
each PSDD node to its support set variables.

D(.) denotes the total number of examples in the dataset.

PrD(.) denotes the empirical data distribution. For a com-
plete instantiation of variables v in the dataset

PrD(v) =
D(v)

D(.)

The no smoothing assumption for a PSDD r is used to
denote the fact that the proabability under r for examples
not in the data is zero.

Note : For all the remainder of the proof, we assume the

base of the PSDD root to be a tautology and no smoothing.
We also assume no sub is the constant False in the circuit.

Definition 1. (Optimality)

Define as PSDD n as optimal (with dataset D), if for each
complete instantiation v of variables V = φ(n) in the
support set of n, Prn(v) = PrD(v).

Definition 2. (Faithfulness)

A PSDD rooted at r is faithful if for every decision node
n, we have that for every prime sub independence I(n) as
defined in proposition 1, that is satisfied by node n, I(n)
empirically holds under dataset D.

Definition 3. Let r be a PSDD root node. Let r be optimal
with dataset D. We define the distribution of a sentence γ
over φ(r), under PrD(.) as : PrD(γ) = D(γ)

D(.) .

Lemma 1. For a PSDD r, let γ be a sentence over the
variables V = φ(r). Let r be optimal with dataset D.

Then, assuming no smoothing : Prr(γ) = PrD(γ)

Proof. Prr(γ)

= Σx|=γPrr(x) [x : complete instantiation of φ(r)]

= Σx|=γPrD(x) [optimality]

Let xD denote a complete instantiation of φ(r) that is
present in dataset D and x!D denote a complete instanti-
ation not present in dataset D.

Then we have :

Σx|=γPrD(x)
= ΣxD|=γPrD(xD) + Σx!D|=γPrD(x!D)
= ΣxD|=γPrD(xD)

= D(γ)
D(.) = PrD(γ) (Definition 3)

Thus we have that Prr(γ) = PrD(γ) which concludes the
proof.

Lemma 2. Let r be a PSDD. Let D be a dataset over V =
φ(r). Let r be optimal with D. Let α and γ be sentences
over V . Then, assuming no smoothing, we have :

Prr(α|γ) = PrD(α|γ),

where we define PrD(α|γ) = D(α∧γ)
D(γ) .

Proof. Prr(α|γ)

=
Σx|=α∧γPrr(x)

Σx|=γPrr(x)

=
Σx|=α∧γPrD(x)

Σx|=γPrD(x) [optimality]

=
Σx|=α∧γD(x)/D(.)

Σx|=γD(x)/D(.)

= D(α∧γ)
D(γ)

Thus we have PrD(α|γ) = D(α∧γ)
D(γ) = Prr(α|γ) conclud-

ing the proof.

Lemma 3. Let r be a PSDD optimal with dataset D. Let n
be a decision node at some depth from r i.e. n 6= r. Let α
be a sentence over φ(n). Then, assuming no smoothing, we
have :

Prn(α) = Prr(α|γn) = PrD(α|γn),

where γn is the context of given decision node n.

Proof. Using the properties of a PSDD (Kisa et al. [2014]),
we have :

Prn(α) = Prr(α|γn).

Combining this with Lemma 2, we have :

Prn(α) = Prr(α|γn) = PrD(α|γn)

which concludes the proof.

Proof of Theorem 1 With our introduced definitions, The-
orem 1 can alternately be rephrased as a PSDD is optimal iff
it is faithful with the data. Thus, we break Theorem 1 into
two distinct theorems and prove each of them separately.

Theorem 2. For a PSDD rooted at r, optimality implies
faithfulness.

Proof. We have that r is optimal with dataset D.

We just need to show that each prime sub independence is
now satisfied under the data distribution and we are done i.e.
each decision node’s induced independences are faithful to
the dataset.

Let n be any arbitrary decision node. Let a be one AND
child of n. Let [a] = [p] ∧ [s]. We denote γa = γn ∧ [a] to
represent the conjunction of the decision node’s context and
its prime base. Let X = φ(p) and Y = φ(s). Consider an
instantiation X=x, Y=y in the support set of a.

The prime sub independence in proposition 1 states :

Prr(xy|γa)
= Prr(x|γa)Prr(y|γa) (Prime Sub Independence)
= PrD(x|γa)PrD(y|γa) (Lemma-2)
= PrD(xy|γa) (optimality of r).

The last step uses Prr(xy|γa) = PrD(xy|γa)

As n was arbitrary, this shows that the prime sub indepen-
dence holds in the context of the data distribution for every
decision node n. Thus r is faithful.

Theorem 3. For a PSDD rooted at r, faithfulness implies
optimality.

Proof. We first define a relation between two PSDD nodes.
A decision node m is said to be below n if the vtree node
normalized for m is in the subtree of the vtree node normal-
izaed for n. The level of a vtree node is how high up it is
in the vtree. The bottom-most level are the leaf vtree nodes.
The highest level vtree node is the one corresponding to the
PSDD root. The level of a PSDD node is the level of the
vtree node it is normalized for.

We prove by induction over the levels of PSDD nodes.

Base Case :

For our base case, we consider PSDD nodes normalized for
vtree nodes one level above the leaves. Instances of such
PSDD nodes can be seen in Figures 1.1 and 1.2.

Consider Fig. 1.1.

n may have multiple AND children. A single one is high-
lighted here as a. Let θa be the parameter corresponding to
this AND child. This AND node has a support set for the
instantiation x = > and y = >. For these instantiations :

Prr(xy|γn) = Prn(xy) = θaPrX(x)PrY (y) by defini-
tion.

Also, PrX(x) = 1 and PrY (y) = 1.

This gives :

Prr(xy|γn) = θa =
D(X ∧ Y ∧ γn)

D(γn)
= PrD(xy|γn)

This shows that for this (n, a) pair, the PSDD induced proba-
bility is the same as the one obtained from the dataset, for an
instantiation in the support set of the AND node. Similarly,
the cases for other AND nodes having different combina-
tions ofX and Y literals as their children can also be proven.

Thus the inductive hypothesis is true for the PSDD node in
Figure 1.1.

Consider Figure 1.2

We consider an initialization of variables as x = > and
y = >. The remaining cases can be proven in a similar
manner. The distribution under n can be factorized as :

Prn(xy) = PrX(x)PrY (y)

where θa = 1 since there is only one AND child of n.

PrX(x) = θ and PrY (y) = φ.

By definition, we have :

θ = D(γn∧X)
D(γn) = PrD(x|γn)

φ = D(γn∧Y)
D(γn) = PrD(y|γn)

Thus, we have :

Prr(xy|γn) = Prn(xy) = θφ

= PrD(x|γn)PrD(y|γn)

= PrD(xy|γn)

where the last step follows from faithfulness and the AND
node represents a tautology as its base.

Thus the inductive hypothesis is true for the PSDD node
in Figure 1.2. This concludes our proof showing that the
hypothesis holds for the base case.

Induction Case :

We assume that the induction hypothesis holds for all PSDD
nodes normalized for vtree nodes at level l. That means, for
every PSDD node m at level l, we have :

Prr(α|γm) = PrD(α|γm)

for every logical sentence α over the support set of m.

Now consider a PSDD node n at level l + 1. We show that
the inductive hypothesis holds for n. Let X and Y be the
prime and sub variables corresponding to n. We consier an
arbitrary instantiation xy of X ∪ Y in the support set of n.

Due to determinism, we have that only one AND child
will satisfy the given instantiation. Let that child be a with
[a] = [p] ∧ [s]. Let the corresponding parameter associated
be θx,ya .

Thus, we have :

Prr(xy|γn)
= θx,ya Prr(x|γn ∧ [a])Prr(y|γn ∧ [a])
= θx,ya PrD(x|γn ∧ [a])PrD(y|γn ∧ [a]) (Induction Step)

= θx,ya PrD(xy|γn ∧ [a]) (Faithfulness)
= D(γn∧[a])

D(γn)
D(x∧y∧γn∧[a])
D(γn∧[a]) (Definition of the terms)

= D(x∧y∧γn)
D(γn) (as xy |= [a])

= PrD(xy|γn) (By definition)

Since we have shown the above hypothesis to hold for
any arbitrary instantiation X=x, Y=y in the support set of
a decision node n, we can conclude that it will hold for
all instantiations in the support set. This completes the
induction case and the proof.

	Introduction
	Background and Notation
	Ensemble Learning
	Experiments
	Conclusion
	Proofs

