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a b s t r a c t 

We present a novel learning-based approach to graph representations of road networks employing state- 

of-the-art graph convolutional neural networks. Our approach is applied to realistic road networks of 17 

cities from Open Street Map. While edge features are crucial to generate descriptive graph representa- 

tions of road networks, graph convolutional networks usually rely on node features only. We show that 

the highly representative edge features can still be integrated into such networks by applying a line graph 

transformation. We also propose a method for neighborhood sampling based on a topological neighbor- 

hood composed of both local and global neighbors. We compare the performance of learning represen- 

tations using different types of neighborhood aggregation functions in transductive and inductive tasks 

and in supervised and unsupervised learning. Furthermore, we propose a novel aggregation approach, 

Graph Attention Isomorphism Network, GAIN 

1 . Our results show that GAIN outperforms state-of-the-art 

methods on the road type classification problem. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

p

p

b

o

p

m

c

d

p

t

i

i

h

d

m

(

b

s

a

s

s

c

i

m

t

t

o

P

m

v

r

2

h

0

. Introduction 

Cities around the world are growing and increasingly more peo- 

le are moving from rural to urban areas. Today, 55% of the world 

opulation lives in cities, and by 2050, the number is expected to 

ecome 68% [1] . Increased urbanization leads to a stronger need 

f urban planning and design, which deals with the infrastructure 

assing into and out of urban areas, such as transportation, com- 

unications, and distribution of road networks [1] . 1 

In urban planning the physical layout of human settlements is 

onsidered as the main subject [2] . Urban design is the process of 

esigning and shaping the physical features of the cities for the 

rovision of municipal services to residents and visitors. In contrast 

o architecture, which focuses on the design of individual build- 

ngs, urban design deals with the larger scale of groups of build- 

ngs, infrastructure, streets, public spaces and the whole neighbor- 

oods as well as districts of the entire cities. The main goal is to 

esign urban environments, which are equitable, beautiful, perfor- 

ative, and sustainable [3] . 
∗ Corresponding author. 

E-mail addresses: zahra.gharaee@liu.se (Z. Gharaee), shreyaskowshik@iitkgp.ac.in 
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1 Link to repository: https://github.com/zahrag/GAIN 

m

d

N

t

a

ttps://doi.org/10.1016/j.patcog.2021.108174 

031-3203/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article u
One key element in designing an urban environment is the de- 

ign of road networks, which ensures efficient traffic flows as well 

s connectivity. Road networks design also supports other domains 

uch as autonomous vehicles and entertainment industry for in- 

tance gaming. 

In this article, we design and implement a graph-based ar- 

hitecture capable of performing the following tasks: (1) Learn- 

ng road networks of realistic cities and towns from open street 

ap to accomplish road type classification. (2) Applying line graph 

ransformation to use qualitative road segment features in learning 

he representations. (3) Proposing a neighborhood sampling based 

n the nodes in local and global topological neighborhoods. (4) 

roposing a novel approach to aggregation, Graph Attention Iso- 

orphism Network, GAIN, and comparing its performance with a 

ariety of state-of-the-art approaches to representation learning of 

oad network graphs. 

. Related work 

One can find at least three main categories of approaches for 

odeling road networks in the literature: the earliest are proce- 

ural methods for modeling of road networks from a set of rules. 

ext are example-based approaches applying a preprocessing step 

o extract statistical information. Most recent are learning-based 

pproaches including methods using deep learning techniques. 
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The procedural modeling of road networks relies on a set of 

ules; Open L-System [4] gradually generates a road map from ini- 

ial seed points to conform user guidance, the automatic procedu- 

al road generation [5] uses a weighted anisotropic shortest path 

lgorithm and the procedural modeling in [6] applies a hierarchi- 

al generation of road networks from a geometric graph using a 

on-Euclidean metric combined with a path merging algorithm. 

The next category of approaches for modeling road networks 

overs example-based approaches [7] . In contrast to procedural ap- 

roaches, example-based methods [8] do not utilize a rule set for 

oad generations. They rather analyze the data from road networks 

r city layouts in a preprocessing step to extract templates as well 

s statistical information. 

The growth of machine learning techniques especially recent 

dvancements in deep learning makes them a powerful tool for 

oad networks learning, prediction and generation. Since road net- 

orks are growing extensively, it is required to apply methods ca- 

able of dealing with big data. Moreover, access to the satellite 

mages makes it possible to even train deep learning algorithms 

nd-to-end. 

.1. Learning-based methods 

In recent years deep learning techniques have been used for 

rocedural and data driven content generation. Among them is the 

ethod, which learns a low-dimensional generative model from a 

igh-dimensional procedural model by using shape features [9] . To 

ircumvent the large number of parameters involved in the rule 

ets and also their non-linear relationship to the resulting con- 

ent, a sketch-based approach to procedural modeling trains a deep 

onvolutional Neural Network (CNN) to map sketches into the pro- 

edural model parameters [10] . 

An urban procedural model [11] also trains CNNs to recognize 

he procedural rule intended by a sketch and estimating its param- 

ters. They use simple procedural grammars to turn sketches into 

ealistic 3D models. A neurally-guided architecture [12] augments 

rocedural models with deep neural networks to control the ran- 

om selections of different models based on the output. 

Using generative models based on deep neural networks have 

lso been extensively studied for graph generations. One example 

s the method that applies deep learning to generate an initial seg- 

entation of aerial images and feed them to an algorithm, which 

easons about missing connections in the extracted road topology 

13] . 

To automatically construct accurate road network maps from 

erial images RoadTracker [14] uses an iterative search process 

uided by a CNN-based decision function to derive road network 

raph directly from the output of CNN. Graph neural networks is 

sed to express probabilistic dependencies of a graph nodes and 

dges in order to learn the distributions over any arbitrary graph 

15] . 

The GraphRNN [16] learns to generate graphs by training on a 

epresentative set of graphs and decomposes the graph generation 

rocess into a sequence of node and edge formations, conditioned 

n the graph structure generated so far. The Neural Turtle Graphics 

NTG) [17] represents the road layout using a graph where nodes 

f the graph represent control points and edges of the graph repre- 

ents road segments. NTG is a sequential generative model param- 

terized by a neural network, which iteratively generates a new 

ode and an edge connecting to an existing node conditioned on 

he current graph. 

There are a number of approaches for graph generation based 

n Generative Adversarial Networks (GAN). Among them is Street- 

AN [18] , in which a preprocessing layer is applied to convert a 

iven representation of a road network into a binary image using 

ixel intensities to encode the presence or absence of streets. The 
2 
odel next trains a GAN to synthesize a multitude of arbitrary 

ized street networks. Finally the post-processing layer extracts a 

raph-based representation of the generated images. 

The NetGAN [19] generates graphs from random walks and the 

odel is trained using Wasserstein GAN objective function. Using 

ANs, GraphGAN [20] is proposed as a graph representation learn- 

ng framework, which applies a new graph softmax to satisfy the 

roperties of normalization, graph structure awareness, and com- 

utational efficiency. 

.2. Graph-based methods 

Graphs are more commonly applied to describe information 

cross many diverse fields where complex and unstructured data 

epresents a particular conceptual network like social networks, 

olecular networks, biological protein-protein networks, telecom- 

unication networks or brain connectomes [21] . 

The generic structures of such networks, especially when com- 

ared to the grid-like structure of the images, audio, and text, 

akes it difficult to analyze their representations. Since graphs are 

on-Euclidean and the number of vertices and edges can vary arbi- 

rarily, they become a powerful tool for data representation in such 

rregular domains and therefore, it has been a surge in research on 

raph representation learning recently [22] . 

To incorporate high-dimensional non-Euclidean information of 

he graph structure, earlier approaches relied on hand-engineered 

eatures such as degrees or clustering coefficients [23] , kernel func- 

ions [24] and engineered features to measure local neighborhood 

tructures [25] . However, using hand-engineered features could be 

n inflexible and expensive task. 

Recently learning representations is becoming more popular, 

hich is based on learning a mapping that embeds nodes, or the 

ntire (sub)graphs, as points in a low-dimensional vector space 

o summarize every node’s position and the structure of its local 

eighborhood [22] . The learning representations facilitates down- 

tream machine learning tasks like link prediction [26] or node 

lassification [27] . 

Graph structure and methods have also been used to enhance 

he ability to learn a variety of tasks like image clustering and 

ecognition [28] , object identification [29] , action recognition [30] , 

nd few-shot learning (FSL) [31] . The approach to image cluster- 

ng and recognition [28] investigates graph characteristics from the 

eat kernel trace by exploring three different methods to charac- 

erizing it as a function of time. To identify objects, spectral graph 

nalysis of a hierarchical description of an image is applied to con- 

truct a feature vector of fixed dimension [29] . 

Among the graph-based methods developing FSL are the EGNN 

32] , which learns to predict edge-labels rather than node-labels by 

teratively updating the edge-labels using both intra-cluster simi- 

arity and the inter-cluster dissimilarity, and the DPGN [33] , which 

ncorporates distribution propagation in graph neural network to 

acilitate FSL tasks. In [34] , however, a concept graph is used for 

eakly supervised FSL by applying a meta concept inference net- 

ork, which quickly adapts to a novel task using the joint infer- 

nce of the abstract concepts and a few annotated samples. 

.3. Graph convolutional networks 

Graph Convolutional Networks (GCN) are a recent generation of 

pproaches, which represent every node of a graph as a function 

f its neighborhood [26,35,36] . Learning node representations has 

hree important advantages. First is its computational efficiency as 

 result of sharing network parameters, second is the integration 

f nodes attributes to generate information about their positions 

nd roles in the graph, and third is the generalization of learned 

nowledge to the unseen nodes and graphs. 
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Aggregating the information of a local node neighborhood in- 

tead of the entire graph will therefore help to address the limita- 

ions of approaches relying on shallow embedding [37,38] and the 

nes using deep auto-encoders [39,40] . 

Similar to GCN, GraphSAGE [27] applies convolutional mecha- 

ism to train a set of aggregator functions in order to learn aggre- 

ated information of a local neighborhood. GraphSAGE can lever- 

ge node features in order to learn an embedding function, which 

eneralizes to unseen nodes or graphs. However, GraphSAGE and 

CN differ in the aggregation as well as vector combination meth- 

ds they apply. 

An attention based graph convolutional approach, Graph At- 

ention Network (GAT) [21] operates on graph-structured data us- 

ng masked self-attention layers to improve the performance of 

rior graph convolution based methods. The gated attention net- 

ork (GaAN) [41] , on the other hand, applies a convolutional sub- 

etwork to control the importance of attention head based on a 

umber of gates. 

The more recent, Graph Isomorphism Network (GIN) [42] mod- 

ls injective multiset functions for neighborhood aggregation by 

eveloping a theory of deep multi-sets, which parametrizes univer- 

al multi-set functions using neural networks such as multi-layer 

erceptrons, MLP. GIN applies SUM aggregators to implement in- 

ective and universal functions over the multi-sets. 

Using recent graph representation learning approaches such as 

raphSAGE [27] , GAT [21] , GaAN [41] , and GIN [42] , a node learns

epresentation by aggregating the information of nodes sampled 

rom its local neighborhood through a certain number of hops, 

here one hop is moving one layer forward from a node. 

Learning graph structure using local neighborhood aggregation, 

owever, is not capable of integrating edge features in graph repre- 

entation learning as algorithms rely on node features only. How- 

ver, in road network graphs, edge features are more descrip- 

ive and could play a significant role in learning representations. 

o address this issue, representation fusion of nodes, edges, and 

etween-edges, the Relational Fusion Network (RFN) [ 43 ] for road 

etwork graphs is proposed. RFN uses both primal and dual graphs 

here dual graph nodes and edges represent primal graph edges 

nd between-edges, respectively. Applying relational fusion, RFN 

ddresses speed limit classification and speed limit estimation 

roblems in an inductive supervised setting using binary classifi- 

ation. 

Similar to RFN [43] , we apply dual graph in our experiments, 

owever, we use exclusively dual graph generated by line graph 

ransformation of the original graph in order to make use of in- 

ormative road segment attributes in learning representations and, 

herefore, we do not make use of original graph in our analysis. 

o the best of our knowledge, the basic approach to generate line 

raph in this article is similar to the one used in dual graph pre-

ented in [43] . 

Moreover, in contrast to RFN, which only addresses speed limit 

lassification and estimation in an inductive supervised setting us- 

ng binary classes, our experiments explore the four major tasks of 

ulti-class road type classification in unsupervised and supervised 

ransductive as well as inductive settings. A more detailed descrip- 

ion of experimental setup used by RFN in comparison to ours is 

resented in Section 4.2.2 . 

The unsupervised classification of road networks is an impor- 

ant problem since completing missing labels is logistically de- 

anding and expensive task. In OSMnx [44] , labels are frequently 

eft out or road types are miss-labeled. Especially the inductive set- 

ing allows training on high-quality densely labeled road network 

nd transferring this knowledge onto more sparsely labeled road 

etworks. 

Furthermore, this article proposes a novel approach, GAIN to ag- 

regating knowledge for learning representations used to address 
3 
oad type classification problem. However, GAIN could be applied 

o learning representations of any types of graphs and not just 

oad type graphs and, therefore, any classification task could be 

ddressed using the same approach. 

To enhance learning representations, we also propose sampling 

rom a topological neighborhood composed of both local (Graph- 

AGE [27] ) and global neighbor nodes by applying a new search 

echanism presented in Section 3.3 . This facilitates using relevant 

nformation of the neighbor nodes in further distances to a node. 

. Method 

In a standard graph learning problem, a graph is represented 

y a set of nodes or the vertices connected by a set of links or the

dges. This formulation is usually denoted by G = (V, E) , where G 

s the graph, V and E are vertices and edges respectively. In this 

rticle, the learning paradigm starts by setting a number of hops, 

here one hop is counted by moving forward one layer from a 

ode. The number of hops is set to 2 and the graph node attributes 

re aggregated by the nodes in the deepest hop. 

Sampling among nodes of the training set, the algorithm selects 

wo sets of nodes, one set per hop. The second set contains nodes 

n the neighborhood of the first set. For every node of the second 

et, it aggregates information of direct neighbors to its own and, 

herefore, it generates a vector representing itself. Similar to the 

econd set, each node of the first set generates its representation 

ector by aggregating information from direct neighbors to its own. 

.1. Line graph transformation 

Having a first view to the road network graphs, it sounds rea- 

onable to consider road segments as graph edges and crossroads, 

unctions, and intersections as graph vertices as shown in Fig. 1 

a). However, this approach suffers from a limited feature repre- 

entation of vertices since there are not sufficient features describ- 

ng crossroads and intersections that are essential for road network 

epresentation. 

Furthermore, among many approaches addressing the graph 

epresentation learning problem [21,27,41,42] , the features used 

n the learning process describe merely the vertices and not the 

dges. 

To address feature representation problem, we instead replaced 

raph vertices as roads segments and, therefore, the connectivity 

etween road segments will generate graph edges as shown by 

ig. 1 (b). Using this strategy, the informative road features can 

e utilized in the learning representation process. A more detailed 

escription about implementation of line graph transformation is 

vailable in Section 4.1 . 

.2. Supervision modes 

Supervised learning For supervised learning, ground-truth road 

ype labels of graph vertices are used for calculating a cross- 

ntropy loss function for our multi-class road type classification 

roblem. The representation vectors received from the aggregation 

unction are normalized by l 2 normalization and input to a one- 

ayer fully connected neural network to predict class labels, which 

re then used to calculate the supervised loss value. 

Unsupervised learning A fully unsupervised setting uses a graph- 

ased loss function shown in (1) to the positive case representa- 

ion vectors sampled from a set of topological neighbors and neg- 

tive case sampling distribution, P n : 

 G ( z v ) = −log (σ ( z T v z u )) − E 

u n ∼P n (u ) 
log (−σ ( z T v z u n )) , (1) 

here z v and z u are the output representation vectors of sampled 

ode v and topological neighbor node u ∈ N t (v ) . The loss function
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Fig. 1. A sketch of applying the line graph transformation on a road network graph data (a), which results in a new graphical network (b). 
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ses a sigmoid σ and negative case sampling distribution P n . Thus, 

 u n is a negatively sampled neighbor of node v . 

.3. Building topological neighborhoods 

We propose a set of topological neighborhoods, N t (v ) for every 

ampled node v of the graph, which encompasses both local, N l (v ) ,
nd global, N g (v ) , neighborhoods. To this end, a search mechanism 

s implemented, which selects local and a set of global neighbors 

or a node v based on an unbiased random walk as presented by 

lgorithm 1 . 

lgorithm 1 Topological Neighborhood: N t (v ) . 
nput : G = (V, E) & N(v ∈ V ) = { u | (v , u ) ∈ E} . 
utput : Topological neighborhood N t (v ) of local N l (v ) & global

 g (v ) neighbors. 

1: Initialize number of walks N w 

, local walk length L l & global 

walk length L g . 

2: for v ∈ V do 

3: N l (v ) = N g (v ) = N t (v ) = {} . 
4: for n = 1 : N w 

do 

5: for l = 1 : L l do 

6: Sample u from N(v ) . 
7: if u � = v then 

8: N l (v ) ← u . 

9: end if 

0: end for 

11: u 1 = v . 
2: Sample u 2 from N(v ) . 
3: for l = 1 : L g do 

14: u 0 = u 1 . 

5: u 1 = u 2 . 

6: Sample u 2 from N(u 1 ) . 

17: end for 

18: if u 1 � = v then 

9: N g (v ) ← u 1 . 

0: end if 

1: end for 

N t (v ) = N l (v ) ∪ N g (v ) 
2: end for 
4 
Applying both local and global neighborhood provides a node 

ith two views. Having the first view, a node captures the closer 

icinity and it extracts the information of its neighbors in a fixed 

ength local area [27] . We propose adding a second view based on 

he node global neighborhood to facilitate the extraction of infor- 

ation from related nodes in further distances. This way, we ex- 

end the node representation to improve the performance of learn- 

ng representations. 

To generate the second view as mentioned above, we developed 

 global random walk with fixed length, L g two times the size of 

ocal random walk, L l as L g = 2 × L l . All topological neighbors visi-

le to a node through both views are then mixed and shuffled to 

e used for training the system. 

.4. Previous approaches proposed for aggregation 

As mentioned earlier, a sampled node v aggregates the informa- 

ion of its direct neighbors u ∈ N(v ) in order to generate an output

epresentation vector h 

k 
v for each hop layer k . There are a num- 

er of different approaches used to build the aggregation function, 

hich are mentioned in the following. 

GCN A graph convolutional network, GCN [35] aggregates the 

nformation as: 

 

k 
v ← σ

(
W · MEAN 

(
h 

k −1 
v ‖ h 

k −1 
u ∈ N(v ) 

))
, (2) 

here W is the set of weights, associated to the sampled and the 

eighbor nodes represented by v and u . k iterates over hop lay- 

rs and σ is the sigmoid function. Concatenation shown by ‖ is 

pplied to the sampled and neighbor nodes representation vectors 

efore applying the MEAN operation. 

GraphSAGE GraphSAGE architecture [27] applies a different for- 

ulation to aggregation: 

 

k 
v ← σ

(
W ·

(
h 

k −1 
v ‖ AGG 

(
h 

k −1 
u ∈N (v ) 

)))
, (3) 

here W shows the weights of aggregator functions and σ is the 

igmoid function. For each hop k , the representation vectors of di- 

ect neighbors h 

k −1 
u ∈ N(v ) of the sampled node v are aggregated us- 

ng an aggregation function AGG and then the aggregated vector 

s concatenated to the representation vector of the sampled node 

 

k −1 
v . 
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4

To make a thorough analysis, we made our investigations based 

n a number aggregation functions [27] : GraphSAGE-MEAN, which 

pplies mean operation to aggregate neighborhood information, 

raphSAGE-MEANPOOL, which aggregates information by calcu- 

ating mean pooling over MLP functions, GraphSAGE-MAXPOOL, 

hich aggregates information using max pooling of neighborhood 

nformation over MLP functions and, finally, GraphSAGE-LSTM, 

hich applies a standard LSTM to aggregate the neighborgood in- 

ormation. 

GAT The graph attention network, GAT [21] , calculates average 

f the weighted representation vectors of the first order neighbor 

odes u ∈ N(v ) (including v ) over multiple heads by applying at- 

ention weights, αm 

v u , to the corresponding neighbors: 

 

k 
v = σ

( 

1 

M 

M ∑ 

m =1 

∑ 

u ∈ N(v ) 

αk −1 
m v u 

W 

′ 
m 

h 

k −1 
u 

) 

, (4) 

here M is the total number of attention heads used for regular- 

zation and W 

′ is a set of corresponding input linear transforma- 

ion weights matrix used to project nodes input features into a 

igher level feature space. 

GIN The graph isomorphism network, GIN [42] models injective 

ulti-set functions for aggregating information by parameterizing 

ulti-layer perceptrons, MLP . GIN employs the aggregation formu- 

ation as: 

 

k 
v ← MLP 

k 

( 

(1 + εk ) · h 

k −1 
v + 

∑ 

u ∈ N(v ) 

h 

k −1 
u 

) 

, (5) 

here MLP is the multi-layer perceptron and ε could be either 

earned by gradient descent as one variable of the network or be 

xed to zero. 

.4.1. Novel formulation of the aggregation function 

As an alternative to the explained aggregation methods, we de- 

eloped a novel formulation of aggregation, the Graph Attention 

somorphism Network (GAIN) 2 Using this approach, a node aggre- 

ates information of its neighbors based on an importance value 

iven to each neighbor node and applies the SUM for aggregation: 

 

k 
v = MLP 

k 

( 

(1 + εk ) · h 

′ k −1 
v + σ

∑ 

u ∈ N(v ) 

a k −1 
v ,u · h 

′ k −1 
u 

) 

, (6) 

here h 

′ 
u = W 

′ 
m 

· h u shows the linear transformation of node u into 

 higher level feature space using weight matrix W 

′ 
m 

. The attention 

eight a v ,u is given to the neighbor node u ∈ N(v ) . 
In our implementations, we applied one MLP function with one 

idden layer since an MLP can represent the composition of func- 

ions [45] . We implemented σ using both non-linearity ELU func- 

ion and Identity function, and we observed the performance was 

lightly superior applying Identity function. 

Inspired by GAT [21] , a feed-forward neural network with 

eights W a is applied to the concatenation of sampled and neigh- 

or nodes. This concatenated vector is then given to a non-linear 

eaky RELU function: 

ˆ 
 w v ,u = relu 

(
W a ·

(
h 

′ k −1 
v ‖ u ∈ N(v ) h 

′ k −1 
u 

))
. (7) 

Finally, a soft-max function is used to create attention weights: 

 w v ,u = 

exp ( ̂  a w v ,u ) ∑ 

u ∈ N(v ) exp ( ̂  a w v ,u ) 
. (8) 
2 Isomorphism term in GAIN is used as a reference to GIN representing the bases 

f our approach, however our proposed approach to aggregation does not fully hold 

njective features due to the application of non-linearity in σ and attention weights. 

d

o

g

5 
Compared to GAT [21] , GAIN applies attention weights only to 

he neighboring nodes of v (excluding v ) and it uses SUM rather 

han MEAN over attention heads. On the other hand, GAIN ap- 

lies attention weights to aggregate neighborhood representations 

ather than just aggregating neighborhood representations without 

eighting them as proposed by GIN [42] . 

GAIN formulation presented in (6) considers one attention head, 

owever, the mathematical formulation of GAIN using multiple at- 

ention heads is presented in Appendix A.1 . Our experimental in- 

estigation shows no improvement in performance applying mul- 

iple attention heads. 

. Experiments 

To evaluate the ability to generalize to unseen graphs, we de- 

igned experiments using two different data sets, inductive vs. 

ransductive setting, which denotes inductive reasoning as infer- 

ing knowledge from specific to general and transductive reasoning 

s inferring knowledge from specific to specific [46] . 

Hence, for the inductive experiments we report the results of 

earning representations on test sets containing graphs of unseen 

ities and for the transductive experiments we report the results 

f learning representations on test set of unseen nodes of the same 

raph. Another split of our experiments is designed to compare the 

erformance of unsupervised vs. supervised learning. 

.1. Input dataset 

To address the main problems of this project, road network 

atasets are represented as graphs composed of vertices and 

dges. To test transductive and inductive capabilities of the as- 

essed methods, we generate two datasets of road networks. Us- 

ng Open Street Map (OSMnx [44] ), we extract the crowd-sourced 

eographic information of road networks in Swedish Cities from 

SMnx. 

Both datasets are preprocessed in the following way. The 

SMnx data of driving roads is extracted from a 14 km × 14 km 

ile centered at the city centroid. The resulting graph is simplified 

uch that intersections are consolidated within a 10 m distance 

nd interstitial nodes are reduced. Directions of edges are removed 

nd parallel edges are consolidated, a limitation necessary to apply 

he graph representation learning methods. 

We convert graph G into a line graph L (G ) , as described in

ection 3.1 . Each edge of G becomes a node in L (G ) and two edges

hat share a common node in G become an edge in L (G ) . Fig. 2

llustrates edges of the original graph G colored by their different 

round truth road type labels. Overlaid is the line graph represen- 

ation with black edges and colored nodes corresponding to road 

ype label. 

The transductive line graph consists of the road network of 

inköping (population of 106,502) with 500 nodes held out for val- 

dation and 10 0 0 nodes for testing. The inductive line graph con- 

ists of disjoint road networks of 17 Swedish Cities with popula- 

ions between 50.0 0 0 and 150.0 0 0 inhabitants. We excluded the 

hree major cities Stockholm, Göteborg and Malmö as well as any 

uburbs of them, as they have different magnitudes of populations 

nd exhibit different road network characteristics. Two cities each 

ere held-out for validation and testing respectively and, therefore, 

3 graphs are allocated to training the network. Table 1 provides a 

ummary of the transductive and inductive datasets. 

.1.1. Raw features 

To address the road-type classification problem, we extracted 

escriptive attributes of road-segments represented by the edges 

f the original graph, G as well as the nodes of the transformed 

raph, L (G ) . These attributes are used to create raw feature vectors 
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Fig. 2. Input data generation as road network graphs. (a) Linköping road networks represented as a graph. Colors represent different ground truth labels of road types. (b) 

A closeup of Linköping road networks represented as a graph with a line graph representation overlaid in black. Colors represent different ground truth labels of road types. 

Table 1 

Summary of data sets created for our experiments. 

Road Network Datasets 

Task Transductive Inductive 

# Graphs 1 17 

# Nodes 6903 66580 

# Edges 13199 128632 

# Raw Features 56 58 

# Road-Type Classes 5 5 

# Training Nodes 5403 53494 

# Validation Nodes 500 6575 

# Test Nodes 1000 6511 

Avg. Node Degree 3.8241 3.8640 
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pplied in the graph representation learning task. In general the 

eature vector is composed of 4 main component described as: 

• The length of road segments with 1 dimension. 
• The midpoint coordinates of adjacent start and end nodes in 

longitude and latitude with 2 dimensions. 
• The geometry sampled to a fixed-length vector of 20 equally 

distanced points along the length of road segments, which is 

subtracted by the midpoint coordinate (i.e. 20 longitudinal and 

latitudinal distances from the midpoint) and is composed of 40 

dimensions. 
• The one-hot-encoding of the speed limits with 13 and 15 stan- 

dard values for transductive and inductive tasks, respectively. 

As a consequence, the raw feature vectors of roads segments is 

omposed of 56 and 58 values for the transductive and inductive 

asks, respectively. 

.1.2. Ground-truth labels 

To accomplish supervised experiments, it is required to have 

raph vertices annotated using ground-truth labels. In OSMnx, 

oads are tagged with road type labels applicable for the classi- 

cation tasks. However, due to extreme class imbalances shown 

y Fig. 3 , some classes rarely occurring in our data set. Therefore, 

e chose to merge and relabel classes according to the following 

cheme: 

• Class (1): Highway, yes, primary, secondary, motorway-link, 

trunk-link, primary-link, secondary-link. 
• Class (2): Tertiary, tertiary-link. 
• Class (3): Road, planned, unclassified (minor roads of lower 

classification than tertiary). 
6 
• Class (4): Residential. 
• Class (5): Living-street. 

.2. Results 

The input dataset of road networks graphs described in 

ection 4.1 are then used to train the graph representation learning 

lgorithm using 8 different aggregation functions. The experiments 

re designed to investigate performances of different aggregation 

unctions first when learning supervised vs. unsupervised and then 

hen performing an inductive vs. a transductive task. 

As shown in Table 2 a, the experiments are conducted by 8 dif- 

erent graph representation learning approaches using ADAM op- 

imiser through an exhaustive grid search over a set of different 

earning rates and output dimensions. The best performing model 

or each approach on the validation set in terms of micro-averaged 

1-Score is selected and tested on the test set. 

.2.1. Hyperparameter settings 

The settings of all hyperparameters required to run experiments 

re presented in Table 3 . Learning rate and output dimensions are 

sed to conduct exhaustive grid search to find the best performing 

odel based on the validation set. 

Unsupervised For all unsupervised experiments, an ex- 

austive grid search is conducted over the learning rates 

f { 2 e −8 , 2 e −7 , 2 e −6 , 2 e −5 } and the output dimensions of

 64 , 128 , 256 } for the representation vectors at every depth k

f the recursion. There are 9 and 3 neighbors sampled for aggre- 

ation in the first and second hop layers, respectively. There are 

2 negative neighbors sampled and selected for the unsupervised 

raph-based loss function shown by (1) and a dropout rate of 0.1 

s used. We have also made an exhaustive grid search to study 

he role of ε in GAIN (6) by first fixing it to zero and then as a

ariable of the network learned by gradient descent initialized by 

.001 and 0.5. Further investigations about the role of ε could be 

onducted in future studies. 

For each unsupervised graph representation learning approach, 

he combination of learning rates and output dimensions result in 

2 models where each model is trained for 10 0 0 epochs ( Figs. 4 (a)

nd Fig. 4 c) with a batch size of 1024 for the transductive and

048 for the inductive tasks. 

Mean values of micro-averaged F1-Scores for 10 0 0 runs of the 

lassifier on the representation vectors generated by each model 

re then calculated on the validation set and used to select our 

est performing model. Finally, micro-averaged F1-Score of 10 0 0 
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Fig. 3. Percentage of road network class distribution for transductive and inductive data sets generated by OSMnx [44] . As shown by the upper image the class distribution 

is extremely unbalanced and, therefore, we merged classes to get a more balanced distribution of class labels shown by the bottom image. 

Fig. 4. Performance of GraphSAGE-MEAN: validation loss (a) and accuracy (c) of the unsupervised model and validation loss (b) and F1 score of the supervised model (d) 

calculated every 10 training epochs for a total number of 10 0 0 epochs. Based on the performance development we set 10 0 0 and 50 0 epochs to train unsupervised and 

supervised models, respectively. 
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uns of the classifier on the representation vectors generated by 

he best performing model using the test set is reported in Table 2 .

The standard deviations of the F1-Scores tend to zero applying 

0 0 0 runs of the classifier on the representation vectors generated 

y each model. 

Supervised In all supervised experiments, the exhaustive grid 

earch is conducted over the learning rates of { 1 e −4 , 1 e −3 , 1 e −2 }
7 
hile the output dimensions of the representation vectors at every 

epth k of the recursion are set to { 64 , 128 , 256 } . There are 9 and 3

eighbors sampled for aggregation in the first and second hop lay- 

rs, respectively. There is a dropout rate of 0.1 used in this setting. 

imilar to our unsupervised settings, an exhaustive grid search is 

onducted to study the role of ε in GAIN (6) . 
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Table 2 

Performance of different graph representation learning neural networks 

trained unsupervised and supervised to accomplish transductive (a) and 

inductive (b) tasks in order to address road type classification problem. 

The results represented by micro-averaged F1 scores are compared with 

both random baseline performance and when only the raw features are 

given to the classifier. Gain over baseline computes the percentage of 

improvement to when using raw features only. The results show a chal- 

lenging classification problem mainly due to the imbalances apparent in 

the class distribution presented in Section 4.2.1 . 

(a) Transductive-Task 

Approach Unsup. Sup. 

Random Baseline 0.20 0.20 

Raw Features 0.59 0.59 

GCN 0.60 0.58 

GSAGE-MEAN 0.67 0.62 

GSAGE-MEANPOOL 0.69 0.81 

GSAGE-MAXPOOL 0.68 0.80 

GSAGE-LSTM 0.69 0.81 

GAT 0.69 0.75 

GIN 0.69 0.78 

GAIN (ours) 0.71 0.81 

%gain over Baseline 20% 37% 

(b) Inductive-Task 

Approach Unsup. Sup. 

Random Baseline 0.20 0.20 

Raw Features 0.49 0.49 

GCN 0.61 0.43 

GSAGE-MEAN 0.60 0.60 

GSAGE-MEANPOOL 0.61 0.45 

GSAGE-MAXPOOL 0.55 0.44 

GSAGE-LSTM 0.59 0.45 

GAT 0.51 0.43 

GIN 0.47 0.46 

GAIN (ours) 0.56 0.59 

%gain over Baseline 24% 22% 

Table 3 

The table shows parameter settings for the experiments. Dimension denotes the 

number of output dimensions of the representation vector at every depth k of 

the recursion, which is set the same for both first and second layers. Task1 and 

Task2 represent transductive and inductive tasks, respectively. 

Parameter Settings 

Supervision Unsupervised Supervised 

Learning rate { 2 e −8 , 2 e −7 , 2 e −6 , 2 e −5 } { 1 e −4 , 1 e −3 , 1 e −2 } 
Dimension { 64 , 128 , 256 } { 64 , 128 , 256 } 
Epochs 1000 500 

Sample Nodes Layer1(9), Layer2(3) Layer1(9), Layer2(3) 

Dropout 0.1 0.1 

Batch size Task1(1024), Task2(2048) Task1(1024), Task2(2048) 
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For each supervised graph representation learning approach, all 

ombinations of learning rates and output dimensions result in 9 

odels where each model is trained for 500 epochs ( Figs. 4 b and

ig. 4 d) with a batch size of 1024 for the transductive and 2048 for

he inductive tasks. 

Mean values of micro-averaged F1-Scores of the class labels 

redicted by each model are then calculated for the validation set 

nd used to select the best performing model when learning the 

ask supervised. Finally, micro-averaged F1-Score of our best model 

n the test set is calculated and reported in Table 2 . 

.2.2. Comparison to RFN 

An RFN [43] consists of relational fusion layers where each layer 

s generated by a single layer perceptron and takes as input the 

ode, edge, and between-edge representations from previous layer. 

To make a thorough comparison, the major differences of the 

ethod proposed in this study with RFN are mentioned in the 

ollowing. In both cases road network graphs are extracted from 
8 
SMnx [44] and used to generate input dataset, however RFN uses 

irected road network graphs of Danish cities while we make use 

f un-directed road network graphs of the Swedish cities. 

RFN makes use of 3 raw node features represented by one- 

ot-encoded three dimensional vectors of city, rural, and sum- 

er cottage zones categories together with 10 raw edge fea- 

ures represented by one-hot encoded nine-dimensional vectors 

f road segment categories and one-dimensional length. Finally, 

hey used 5 raw between-edge features represented by one-hot en- 

oded four-dimensional vector of turn-direction together with one- 

imensional turn angle. 

There are two sets of experiments conducted by RFN to address 

peed limit classification and speed limit estimation problems. The 

xperiments are performed for the inductive task using a super- 

ised binary classification on 4 versions of RFN based on the fu- 

ion and aggregation functions. We, on the other hand, address 

he road-type classification problem of multi-class input space us- 

ng both supervised and unsupervised learning performed for the 

ransductive as well as the inductive tasks. 

To run our experiments with RFN, we utilized our graphs node, 

dge and between-edge features similar to other experiments per- 

ormed in this study. The node features are represented by 2D 

ode coordinates on the world map and the edge features are com- 

osed of 4 main components as described in Section 4.1.1 . Since 

etween-edges represent common-nodes of the original graph, we, 

herefore, used the common-nodes attributes to generate between- 

dge features. 

For comparison, we use the best performing model of [43] , 

FN-A-I, which applies GAT [21] aggregation and interactional fu- 

ion. Our supervised experiments with RFN-A-I are conducted us- 

ng the soft-max cross-entropy loss function and ground-truth road 

ype labels of multi-class input in our inductive task for 500 

pochs. Similar to our other experiments, an exhaustive grid search 

s conducted over the learning rates of { 1 e −4 , 1 e −3 , 1 e −2 } and the

utput dimensions of { 64 , 128 , 256 } for the representation vectors 

t every depth k of the recursion. The best performing model on 

he validation set is selected and tested on the test set. The results 

f 0.43% accuracy for the transductive and 0.54% accuracy for the 

nductive tasks are achieved, respectively. 

. Discussion 

In this article, we propose a novel graph representation learning 

pproach to address a road type classification problem. We also in- 

estigate state-of-the-art graph convolutional neural networks and 

heir applications on road networks extracted from crowd-sourced 

pen data. To this end, we designed 4 sets of experiments with 

 combination of transductive and inductive tasks when applying 

upervised and unsupervised learning. 

To generate road segments representation vectors using GCN, 

raphSAGE, GAT and GIN, we propose a transformation of the orig- 

nal graph into its line graph, where its nodes are composed of the 

riginal graph edges. Using this approach, we can perform down- 

tream machine learning tasks on the road network as we demon- 

trate with the road type classification in our experiments. 

To address the classification problem especially on large graphs, 

e proposed using a topological neighborhood composed of both 

ocal and global neighbors to train the graph-based loss function. 

his expands the node visibility of the graph structure and eventu- 

lly improves performance. However, the extension of the topolog- 

cal neighborhood increases the amount of time and resources re- 

uired to train the network. To address this limitation, we created 

he topological neighborhood of the node using one set of global 

eighbors only. 

We developed a novel approach to aggregation, Graph Attention 

somorphism Network (GAIN), which based on our experiment re- 
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ults GAIN outperforms the state-of-the-art methods on unsuper- 

ised transductive task, and its performance is competitive in su- 

ervised transductive and inductive experiments. 

For comparison, we conducted experiments with a number of 

tate-of-the-art graph convolutional neural network methods pro- 

osed to aggregate the information of a node with its neighboring 

odes. These are 7 state-of-the-art methods, including GCN [35] , 

raphSAGE (MEAN, MEANPOOL, MAXPOOL and LSTM) [27] , GAT 

21] and GIN [42] , trained using our road network data sets. 

To make evaluations, we based our comparisons of the results 

ith baseline performance achieved by random baseline and by 

pplying only the raw features to the classifier. Baseline results 

re then compared with the performance of using representation 

ectors generated by different graph representation learning ap- 

roaches shown in Table 2 . 

As shown in Table 2 a, all graph representation learning net- 

orks outperform the baseline on both supervised and unsuper- 

ised transductive task. However, GAIN outperforms the rest of 

etworks in unsupervised experiments with 20% improvement of 

erformance compared to using raw features only. In supervised 

xperiments, GAIN, GraphSAGE-LSTM and GraphSAGE-MEANPOOL 

erform the best with 37% improvement over the classification re- 

ults when using raw features only. 

According to the results shown by Table 2 b, unsupervised in- 

uctive experiments are more successful than supervised ones. 

e hypothesize that using our proposed topological neighborhood 

omposed of both local and global neighboring nodes, improves 

he classification of unsupervised experiments. However, the in- 

uctive experiment results shown in Table 2 b, also confirm that 

pplying representation vectors trained by graph representation 

earning networks is superior to the baseline performance of road 

ype classification problem. 

In the unsupervised inductive task, GraphSAGE-MEANPOOL and 

CN achieve the best results, which is 24% above the baseline per- 

ormance using raw features only. In supervised inductive experi- 

ents only GraphSAGE-MEAN and GAIN outperform baseline per- 

ormance, with a maximum 22% improvement to the baseline re- 

ults when using raw features. 

As presented by Table, road type classification task is quite chal- 

enging, which is mainly due to the input data characteristics such 

s imbalances of class distributions presented in Section 4.1.2 , and 

ig. 3 , upper image. Our motivation to merge some of the classes 

ries to address this problem, however, the problem still remains 

see Fig. 3 , bottom image). Moreover, it generates identical roads 

ith different features, which are labeled the same. 

We also evaluate the performance of best RFN model, RFN-A- 

 [43] to address road type classification problem when learning 

upervised. Our results with RFN shows that it outperforms base- 

ine performance on the inductive task but it fails on the trans- 

uctive task. This could relate to the types of features used to 

escribe nodes, edges and between-edges. Our results show that 

AIN outperforms RFN [43] in supervised representation learning 

f road network graphs applying informative road segments at- 

ributes only. 

. Conclusion 

In this paper, a novel approach to graph representation learning, 

AIN, is proposed, which outperforms state-of-the-art methods 

hown in a wide set of experiments. GAIN is motivated through 

xploring the applications of different graph representation learn- 

ng approaches in how to aggregate information available in the 

raph nodes vicinity using a designed topological neighborhood. 

Highly representative attributes of the original graph edges, 

oad segments, are applied to train graph vertices representation 

ectors using a line graph transformation. This addresses the prob- 
9 
em of limited feature representation of original graph vertices 

crossroads, junctions and intersections) since there are not suffi- 

ient features describing crossroads and intersections that are es- 

ential for road network representation. 

To expand the graph nodes visual space, neighbor nodes are 

ampled from a topological neighborhood composed of both local 

nd a set of associated global nodes through application of a ran- 

om walk search mechanism proposed by algorithm 1 . 

A main objective of this study is to present the application of 

ur approach to unsupervised classification of real world road net- 

ork graphs, since the complete annotation of the world is ex- 

remely expensive and it is also too cumbersome to re-adjust label- 

ng of the roads, which are wrongly labeled. However, any classifi- 

ation task could be addressed using the same approach proposed 

n this paper. 

Shown by our results the current work might be not ready for 

ractical applications of road network graphs. It is still required to 

pply further tricks and regularization to improve its performance. 

s a future step, the challenges of road type classification could 

e addressed in a more realistic setting having more information 

f before and after segments as well as more informative road at- 

ributes. 
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ppendix A 

Appendix with supplementary information regarding training 

nd evaluation of the system. 

1. Multi-head GAIN 

GAIN proposed by (6) can be easily extended using multiple 

eads for regularization, which might be interesting for other ap- 

lications than the one presented in this article: 

 

k 
v = MLP 

k ( W · ((1 + εk ) · h 

k −1 
v + σ

M ∑ 

m =1 

∑ 

u ∈ N(v ) 

a k −1 
m v ,u 

· h 

′ k −1 
u )) , (9) 

here h 

′ 
u = W 

′ 
m 

· h u shows the linear transformation of node u into 

 higher level feature space using weight matrix W 

′ 
m 

. The attention 

eight a m v ,u is given to the neighbor node u ∈ N(v ) where m iter-

tes over a number of attention heads used for regularization. W 

epresents the shared weights matrices applied to optimize repre- 

entation vectors of the sampled and the neighbor nodes. We also 

ade experiments using (9) applying M = 1 and we gained the re- 

ults of unsupervised and supervised transductive task as 0.69 and 

.80, while for the unsupervised and supervised inductive task, we 

chieved the results as 0.60 and 0.57. This indicates that applying 

ingle head attention with different settings, (6) performs slightly 

etter to when applying (9) in most cases of our experiments. In- 

reasing the number of heads might improve the results for a more 

egularization, however it will be much more time consuming. 

https://doi.org/10.13039/501100004063
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