Testing for a Change in Mean of a Weakly Stationary Time Series

Shreyas Kowshik (17MA20039) Under the guidance of : Prof. Buddhananda Banerjee

Indian Institute of Technology Kharagpur

shreyaskowshik@iitkgp.ac.in

21/04/2022

Shreyas Kowshik (17MA20039)Under the guid

Background

- 2 Changepoint Detection
- 3 Approaches to Change in Mean Detection
- Proposed Statistic

5 Normalizing Factor Estimation for Proposed Statistic

Background

イロト イヨト イヨト イヨ

Definition

Time series is a collection of random variables $\{X_t | t \in T\}$ over a time index set T, which might be a finite, countably infinite or an uncountable set.

• What we observe are the realized values of the time series i.e. the data set is $\{X_1 = x_1, \dots, X_n = x_n\}$, where the x_i s are some numeric or categorical values.

For example : Population of India, Stock Prices, Rainfall in a city, etc.

Figure: Time Series Data : Stock Prices

Time Series

Mean and Covariance

• The mean $\mu_X(t)$ of a series $\{X_t\}$ is : $\mu_X(t) = \mathbb{E}[X_t]$

• Covariance (autocovariance) function of $\{X_t\}$: $\gamma_X(r,s) = \text{Cov}(X_r, X_s) = \mathbb{E}\left[(X_r - \mu_X(r))(X_s - \mu_X(s))\right]$

Weak Stationarity

A time series $\{X_t\}$ is said to be weakly stationary if :

- $\mu_X(t)$ is independent of t
- For every $h \in \mathbb{Z}$, $\gamma_X(t+h,t)$ is independent of t

Strong Stationarity

A time series $\{X_t\}$ is said to be strongly stationary if for all $k, h, t_1 \cdots t_k, x_1 \cdots x_k$, shift of the time axis does not affect the distribution i.e. $P(X_{t_1} \le x_1, \cdots, X_{t_k} \le x_k) = P(X_{t_1+h} \le x_1, \cdots, X_{t_k+h} \le x_k)$

Time Series

AR(p) Process

An AR(p) (autoregressive) process of order p is defined as :

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + W_t$$

where $W_t \sim WN(0, \sigma^2)$ is white noise.

- The series $\{W_t\}$ is a white noise process.
- For the rest of this work, we will specifically consider AR processes of order 1 i.e. AR(1) processes i.e. :

$$X_t = \rho X_{t-1} + W_t$$

where |
ho| < 1, ho
eq 0

Changepoint Detection

< (17) > < (27 >)

Changepoint Detection

- Detection of the existence of an abrupt change in the distribution of a time series
- Can be change in mean, variance, parameter value, etc.
- We focus our attention on detecting a **change in mean** of a **weakly stationary** time series

Figure: Example changepoint in a time series

Problem Statement

Given a sample $\mathbf{X} = \{X_1, \dots, X_n\}$ from a time-series $\{X_t\}$, we are interested in testing the following hypothesis :

$$H_0 : \mathbb{E}[X_1] = \cdots = \mathbb{E}[X_n]$$
versus
$$H_1 : \mathbb{E}[X_1] = \cdots = \mathbb{E}[X_{k^*}] \neq \mathbb{E}[X_{k^*+1}] = \cdots = \mathbb{E}[X_n]$$

where, $1 \le k^* < n$ is the location of the changepoint and is unknown.

- This framework is usually considered in retrospective changepoint study
- The other paradigm is online changepoint analysis

Change in Mean Detection : Contribution Overview

- We survey different statistics for the given problem statement
- Propose a new **self-normalizing statistic** that has a **sharper rise in power** upon deviation from the null hypothesis
- We show theoretical analysis and simulation studies on the same

Approaches to Change in Mean Detection

Shreyas Kowshik (17MA20039)Under the guid

KS Statistic

Construction

Given a sample $\mathbf{X} = \{X_1, \dots, X_n\}$ from a weakly stationary time-series $\{X_t\}$ and defining $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, construct :

$$T_n(\lfloor nt \rfloor) = \frac{1}{\sqrt{n}} \sum_{t=1}^{\lfloor nt \rfloor} (X_t - \overline{X}_n)$$

Kolmogorov-Smirnov Statistic

$$KS_n$$
 statistic is defined as : $KS_n = \sup_{t \in [0,1]} \left| \frac{T_n(\lfloor nt \rfloor)}{\hat{\sigma}_n} \right|$

.

Kolmogorov-Smirnov Statistic

 KS_n statistic is defined as : $KS_n = \sup_{t \in [0,1]} \left| \frac{T_n(\lfloor nt \rfloor)}{\hat{\sigma}_n} \right|$

- $\hat{\sigma}_n$ is a consistent estimator of σ where $\sigma^2 = \lim_{n \to \infty} n \operatorname{Var}(\overline{X}_n) = \sum_{k \in \mathbb{Z}} \gamma(k)$ is the long run variance
- Estimating $\hat{\sigma}_n$ generally requires using a kernel-based estimate : $\hat{\sigma}_n^2 = \sum_{k=-l_n}^{l_n} \hat{\gamma}(k) \mathbb{K}\left(\frac{k}{l_n}\right)$
- Here *I_n* is a bandwidth parameter which can be a function of sample size *n* or be chosen from the data
- *l_n* as function of sample size : not adaptive to presence of changepoint
- I_n that is data-dependent : can introduce bias in estimation of σ^2 under alternative hypothesis

Self-Normalizing Statistic

- Construct a statistic which is pointwise scaled with its estimated pointwise standard deviation
- This construction can help avoid direct estimation of σ^2 .

$\widetilde{KS}_{n} \text{ Statistic}$ $\widetilde{KS}_{n} \text{ statistic is defined as (Shao'10) :}$ $\widetilde{KS}_{n} = \sup_{t \in [0,1]} \left| \frac{T_{n}(\lfloor nt \rfloor)}{D_{n}} \right|$ where $D_{n}^{2} = n^{-2} \sum_{t=1}^{n} (\sum_{j=1}^{t} (X_{j} - \bar{X}_{n})^{2}).$

• No need to estimate σ^2 : Avoids bandwidth selection

- The mean of data before changepoint is fixed at 1 and the mean after the changepoint is varired above.
- As one moves away from the null hypothesis, the power decreases
- Reason : D_n does not take the alternative into account i.e. the presence and location of a changepoint

Shreyas Kowshik (17MA20039)Under the guid

Changepoint Testing

G_n Statistic

G_n Statistic

 G_n statistic is defined as :

$$T_n(\lfloor nk \rfloor) = \frac{1}{\sqrt{n}} \sum_{t=1}^{[nk]} (X_t - \overline{X}_n)$$

$$S_{t_1, t_2} = \sum_{j=t_1}^{t_2} X_j \text{ if } t_1 \le t_2, 0 \text{ otherwise}$$

$$V_n(k) = n^{-2} [\sum_{t=1}^k (S_{1,t} - \frac{t}{k} S_{1,k})^2 + \sum_{t=k+1}^n (S_{t,n} - \frac{n-t-1}{n-k} S_{k+1,n})^2]$$

$$G_n = \sup_{k=1, \cdots, n-1} T_n(k) V_n^{-1}(k) T_n(k)$$

Shreyas Kowshik (17MA20039)Under the guid

→ ∃ →

G_n Statistic

Figure: Power of G_n , $0 \le \mu \le 6$

Figure: Power of G_n , $6 \le \mu \le 30$

Proposed Statistic

Image: A match a ma

Proposed Statistic

H_n Statistic

Given a sample $\mathbf{X} = \{X_1, \cdots, X_n\}$, the H_n statistic is defined as :

$$T_r(\mathbf{X}) = \frac{1}{n} \left[\left(1 - \frac{r}{n} \right) \sum_{i=1}^r X_i + \left(-\frac{r}{n} \right) \sum_{i=r+1}^n X_i \right]$$
$$H_n = \sup_{r=1,\cdots,n-1} \frac{\sqrt{n} T_r(\mathbf{X})}{\sqrt{\sum_{|h| < n} w(r,h,n) \gamma(h)}}$$

where w(r, h, n) is a weighting function the details of which we will soon derive and $r \in \{1, \dots, n-1\}$.

• To obtain a normalized form of H_n , we need to compute $Var(\sqrt{n}T_r(\mathbf{X}))$

Proposed Statistic

Variance Computation

$$\operatorname{Var}\left[\sqrt{n}T_{r}(\mathbf{X})\right] = \frac{1}{n}\operatorname{Var}\left[\mathbf{a}^{T}\mathbf{X}\right] = \frac{1}{n}\mathbf{a}^{T}\Sigma\mathbf{a}$$

where : $\mathbf{a} = \left[\underbrace{\left(1 - \frac{r}{n}\right), \cdots, \left(1 - \frac{r}{n}\right)}_{r \text{ times}}\underbrace{\left(, -\frac{r}{n}\right), \cdots, \left(-\frac{r}{n}\right)}_{n-r \text{ times}}\right]^{T}$
 $\Sigma = \operatorname{Cov}(\mathbf{X})$

Definining $\alpha = \frac{r}{n}, \beta = \frac{l}{n}$ for lag *l*, it can be shown that : $\mathbf{a}^T \Sigma \mathbf{a} = \sum_{l=-(n-1)}^{n-1} \gamma(l) w(r, l, n)$, where :

$$w(r, l, n) = \begin{cases} n \left[\alpha \left(1 - \alpha \right) - \beta \left(1 - \alpha + \alpha^2 \right) \right], & \text{if } \alpha \ge \beta \\ -n\beta\alpha^2, & \text{if } \alpha < \beta \end{cases}$$

Shreyas Kowshik (17MA20039)Under the guid

Variance Computation in H_n

Figure: Predicted Variance (Black) v/s Sample variance of $T_r(\mathbf{X})$ (Red)

- Black curve denotes variance at a particular index *r* predicted from the above formula for an *AR*(1) process
- Red curve denotes sample variance at a particular index r obtained by simulating multiple AR(1) processes and computing Tr(X)
- Very significant overlap!

Figure: Power Curves comparing $G_n v/s H_n$ statistics. Green : H_n , Red : G_n . On X-axis is plotted the new mean after the changepoint with mean before as $\mu = 1$. On Y-axis is the power of the corresponding statistic's test. ρ :AR(1) coefficient, k:changepoint location, n = 200, σ_{WN} :White-Noise Std Dev

Figure: Power Curves comparing $G_n v/s H_n$ statistics. Green : H_n , Red : G_n . On X-axis is plotted the new mean after the changepoint with mean before as $\mu = 1$. On Y-axis is the power of the corresponding statistic's test.

 ρ :AR(1) coefficient, k:changepoint location, n = 200, σ_{WN} :White-Noise Std Dev

- Power of H_n is **better (sharper)** if not the same as G_n across different values of model parameters ρ , σ_{WN} , k
- *H_n* shows promise to investigate it further

Shreyas Kowshik (17MA20039)Under the guie

Normalizing Factor Estimation for Proposed Statistic

Shreyas Kowshik (17MA20039)Under the guid

Variance Estimation

- Want to estimate : $\mathbf{a}^T \Sigma \mathbf{a} = \sum_{l=-(n-1)}^{n-1} \gamma(l) w(r, l, n)$
- Use a kernel based estimate as they are found to be consistent in the literature :

$$\hat{\sigma}_n^2 = \sum_{k=-l_n}^{l_n} w(r,k,n)\hat{\gamma}(k)\mathbb{K}\left(\frac{k}{l_n}\right)$$

where I_n is a bandwidth parameter

- The above estimate does not account for the presence of a changepoint i.e. it does nothing special for that
- Consequently, using such an estimate can do good under the null hypothesis, but need not be that good under the alternative hypothesis
- We introduce a variable transformation to address this

Variance Estimation

Transformation of Series

Given a sample $\mathbf{X} = \{X_1, \dots, X_n\}$, define the following : $\overline{X}_r = \frac{1}{r} \sum_{i=1}^r X_i$ and $\overline{\overline{X}}_r = \frac{1}{n-r} \sum_{i=r+1}^n X_i$. The series is then transformed as follows :

$$Z_{1} = X_{1} - X_{r}$$

$$\vdots$$

$$Z_{r} = X_{r} - \overline{X}_{r}$$

$$Y_{r+1} = X_{r+1} - \overline{\overline{X}}_{r}$$

$$\vdots$$

$$Z_{n} = X_{n} - \overline{\overline{X}}_{r}$$

The transformed series $\mathbf{Z} = \{Z_1, \dots, Z_n\}$ is used for computing the autocovariance estimates $\hat{\gamma}(h)$.

Shreyas Kowshik (17MA20039)Under the guid

Transformation of Series

This transformation can also be seen as a matrix multiplication

 $\mathbf{Z} = Br\mathbf{X}$

$$Br = \begin{pmatrix} I_r - \frac{1}{r} 11^T & \mathbf{0} \\ \\ \vdots \\ \mathbf{0} & I_{n-r} - \frac{1}{n-r} 11^T \\ \\ \vdots \\ \vdots \end{pmatrix}$$

Thus we have $Cov(\mathbf{Z}) = Br\Sigma Br^T$ Any consistent estimator of $Cov(\mathbf{Z})$ will converge to the above result

Optimization Problem

- Under the null hypothesis, we want the variance after transformation to be same as variance of $\sqrt{n}T_r(\mathbf{X})$ i.e. $a^T \Sigma a$
- Given a sample $\mathbf{X} = \{X_1, \dots, X_n\}$, and a $r \in \{1, \dots, n-1\}$, define M_x to be the sample covariance matrix using only \mathbf{X} and M_z the sample covariance matrix after transforming to \mathbf{Z} . Using $\widetilde{Br} = Br + \lambda I$ and fixing a constraint threshold ϵ , with $x \in \mathbb{R}^n$ such that $\widetilde{Brx} = a$, we have

$$\min_{\lambda} \quad \left| a^{T} M_{x} a - (\widetilde{B} r x)^{T} M_{z} (\widetilde{B} r x) \right|$$

s.t.
$$\left\| \widetilde{B} r x - a \right\|_{2}^{2} < \epsilon, \lambda > 0$$

• Absolute of quadratic in scalar, thus $\exists \lambda^* \in \mathbb{R}$ such that it is minimizer

Variance Estimation

- The final variance estimate is obtained as $x^T M_z x$
- Different kernels exist for the smooth estimation of variance
- We manually select the bandwidth for the kernels by tuning parameters under the null hypothesis

Truncated:	$k_{TR}(x) = \begin{cases} 1 & \text{for } x \le 1, \\ 0 & \text{otherwise,} \end{cases}$
Bartlett:	$k_{BT}(x) = \begin{cases} 1 - x & \text{ for } x \leq 1, \\ 0 & \text{ otherwise,} \end{cases}$
Parzen:	$k_{PR}(x) = \begin{cases} 1 - 6x^2 + 6 x ^3 & \text{for } 0 \le x \le 1/2, \\ 2(1 - x)^3 & \text{for } 1/2 \le x \le 1, \\ 0 & \text{otherwise} \end{cases}$
Tukey-Hanning:	$k_{TH}(x) = \begin{cases} (1 + \cos(\pi x))/2 & \text{for } x \leq 1, \\ 0 & \text{otherwise,} \end{cases}$
Quadratic Spectral:	$k_{QS}(x) = \frac{25}{12\pi^2 x^2} \left(\frac{\sin(6\pi x/5)}{6\pi x/5} - \cos(6\pi x/5) \right)$

Figure: Kernel Formulations

Variance Estimation

Figure: Comparision of variances (X-axis : Index *r*, Y-axis : Variance value). Red : Sample variance of $\sqrt{n}T_r(\mathbf{X})$, Black : Variance predicted, Blue : Variance estimated after using transformation, Green : Variance estimated without using transformation, n = 200, AR(1) process $\rho = 0.7$

- It can be observed that over a wide range of kernels, the estimated variance with and without the transformation overlap significantly
- The estimated variance also has significant overlap with the true theoretical variance
- This shows promise in terms of using this estimate in the *H_n* statistic further

Variance Estimation : Power of H_n

Power Curve Gn (Red) v/s Hn (Green)

Figure: Power Curves (X-axis : Mean Value, Y-axis : Power), Red : Power of G_n , Green : Power of H_n n = 200, 450 iterations, AR(1) process $\rho = 0.7$, Mean before change $\mu = 1$

Variance Estimation : Power of H_n

- Power of H_n with using variance estimation has a sharper rise on deviation from the null hypothesis as compared to G_n
- This establishes our statistic's performance improvement in the given setting

Conclusion and Future Work

Conclusion and Future Work

- \widetilde{KS}_n statistic suffers from **non-monotonic power** problem due to not incorporating information from alternative hypothesis
- *G_n* statistic takes alternative hypothesis into account and provides **monotonic power**
- Proposed self normalizing statistic H_n is found to outperform G_n on a wide range of model parameters under exact simulation
- A variable transformation was introduced to estimate the normalizer of H_n . Its variance estimation was conducted by framing an optimization problem.
- **Power rise was sharper** for *H_n* with variance estimation establishing the improvement with our proposed statistic

Future Work

- Extensively evaluate on different processes and parameters
- Study the **theoretical properties** and **convergence** of *H_n*
- Aim to **publish** the work done

Thank You

メロト メロト メヨトメ

References I

- Donald W. K. Andrews, Heteroskedasticity and autocorrelation consistent covariance matrix estimation, Econometrica 59 (1991), no. 3, 817–858.
- P. C. B. Phillips, Time series regression with a unit root, Econometrica 55 (1987), no. 2, 277–301.
- Xiaofeng Shao and Xianyang Zhang, Testing for change points in time series, Journal of the American Statistical Association 105 (2010), no. 491, 1228–1240.
 [Phi87] [SZ10] [And91]