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Background
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Time Series

Definition

Time series is a collection of random variables {X;|t € T} over a time
index set T, which might be a finite, countably infinite or an uncountable
set.

@ What we observe are the realized values of the time series i.e. the
data set is {X1 = x1,--- , Xp = xn}, where the x;s are some numeric
or categorical values.

For example : Population of India, Stock Prices, Rainfall in a city, etc.
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Figure: Time Series Data : Stock Prices
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Time Series

Mean and Covariance

@ The mean pux(t) of a series {X:} is : ux(t) = E[X¢]

e Covariance (autocovariance) function of {X;} :
x(r;s) = Cov(Xp, Xs) = E[(Xr — ux(r)) (Xs — px(s))]

Weak Stationarity

A time series {X;} is said to be weakly stationary if :
@ ux(t) is independent of t
@ For every h € Z, vx(t + h, t) is independent of t

§

Strong Stationarity

A time series {X;} is said to be strongly stationary if for all
k,h,ty- - ty,x1 - Xk, shift of the time axis does not affect the distribution
i'e- P(th S X1, 7th S Xk) — P(Xt1+h S X1y 7th+h S Xk)

v
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Time Series

AR(p) Process

An AR(p) (autoregressive) process of order p is defined as :

Xe =1 Xe 1+ + 0pXep + Wi

where W; ~ WN(0, 02) is white noise.

@ The series {W;} is a white noise process.

@ For the rest of this work, we will specifically consider AR processes of
order 1 i.e. AR(1) processes i.e. :

X = pXe—1+ W;

where |[p| <1, p#0
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Changepoint Detection
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Changepoint Detection

@ Detection of the existence of an abrupt change in the distribution of a
time series

@ Can be change in mean, variance, parameter value, etc.

@ We focus our attention on detecting a change in mean of a weakly
stationary time series
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Figure: Example changepoint in a time series
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Change in Mean Detection

Problem Statement

Given a sample X = { Xy, -+, X,} from a time-series {X;}, we are
interested in testing the following hypothesis :

Ho . E[Xl] == E[Xn]
H1 . E[Xl] == E[Xk*] ;ﬁ E[Xk*+1] == ]E[Xn]

where, 1 < k* < n is the location of the changepoint and is unknown.

@ This framework is usually considered in retrospective changepoint
study

@ The other paradigm is online changepoint analysis
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Change in Mean Detection : Contribution Overview

@ We survey different statistics for the given problem statement

@ Propose a new self-normalizing statistic that has a sharper rise in
power upon deviation from the null hypothesis

@ We show theoretical analysis and simulation studies on the same
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Approaches to Change in Mean
Detection
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KS Statistic

Given a sample X :_{Xl7 200
{X:} and defining X, = £ 57 | X;, construct :

, Xn} from a weakly stationary time-series

Lnt]
Tulnt)) = —= >~ (%e -
t=1

Kolmogorov-Smirnov Statistic

KShn statistic is defined as : KS, = sup¢(o 1] "(L t))

Shreyas Kowshik (17MA20039)Under the guic Changepoint Testing 21/04/2022 12 /39



Kolmogorov-Smirnov Statistic

Ta(|nt])

On

KS,, statistic is defined as : KS,, = SUP.c[o,1]

@ 0, is a consistent estimator of o where
02 = lim,—0onVar(X,) = Zxezv(k) is the long run variance

o Estimating 6, generally requires using a kernel-based estimate :
62 = Y, A0K (£)

@ Here /I, is a bandwidth parameter which can be a function of sample
size n or be chosen from the data

@ /, as function of sample size : not adaptive to presence of
changepoint

@ /, that is data-dependent : can introduce bias in estimation of o2
under alternative hypothesis
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Self-Normalizing Statistic

@ Construct a statistic which is pointwise scaled with its estimated
pointwise standard deviation

@ This construction can help avoid direct estimation of &2.

KS,, statistic is defined as (Shao'10) :

KS, = sup
te[0,1]

where D2 = n=2 Z?:l(zjt;:l()g — Xa)?).

n

@ No need to estimate 2 : Avoids bandwidth selection
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KS » Statistic
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Figure: Power of f(?,,

@ The mean of data before changepoint is fixed at 1 and the mean after
the changepoint is varired above.

@ As one moves away from the null hypothesis, the power decreases

@ Reason : D, does not take the alternative into account i.e. the
presence and location of a changepoint
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G, Statistic

G, Statistic

G, statistic is defined as :

[nk]
1
To(lnk]) = —= ) (Xi = X»)
v X
t
St = ZXJ if t1 < tp,0 otherwise
Jj=t1
-2 ul t 2 o n— t - ]. 2
Va(k) = 2> _(Se = 35106 + D (Sen— === Skr10)°]
t=1 t=k+1
o= sup  To(K)V, ' (K) (k)
k=1, ,n—1
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G, Statistic
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Figure: Power of G,, 0 < <6
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G, Statistic
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Figure: Power of G,, 6 < 1 <30
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Proposed Statistic
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Proposed Statistic

H, Statistic

Given a sample X = {X1, -+, X, }, the H, statistic is defined as :

T(X):%[(l——)ZXJr(——) S X

i=r+1
VnTr(X)
H, = su
ot [T el h ()

where w(r, h, n) is a weighting function the details of which we will soon
derive and r € {1,--- ,n —1}.

@ To obtain a normalized form of H,, we need to compute

Var(y/nT,(X))
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Proposed Statistic

Variance Computation

Var [VnT,(X)] = %Var a7x| = %aTZa

.
where : a = (1—£) o ,(1_5) (7_5),... ’<_£)
R n n n n/,
rt?r;es n-r;i,mes
Y = Cov(X)
Definining a = -, 3 = % for lag /, it can be shown that :

a'Ya= Z,_i(n 1 Y(w(r, 1, n), where :

w(r,l,n) = n[a(lia)iﬁ(lfaﬁLOéQ)}, ifa>p
|-, ifa<f
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Variance Computation in H,

1.1

est_vals
3

0 50 100 150 200

Index

Figure: Predicted Variance (Black) v/s Sample variance of T,(X) (Red)
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Variance Computation in H,

@ Black curve denotes variance at a particular index r predicted from
the above formula for an AR(1) process

@ Red curve denotes sample variance at a particular index r obtained by
simulating multiple AR(1) processes and computing T,(X)

@ Very significant overlap!
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(a) p=0.7, (b) p=0.7, (c) p=0.7,
OWN = 0.1,k =100 OWN = 0.5,k =100 OWN = 1,k =100

Figure: Power Curves comparing G, v/s H, statistics. Green : H,, Red : G,. On
X-axis is plotted the new mean after the changepoint with mean before as u = 1.
On Y-axis is the power of the corresponding statistic's test.

p:AR(1) coefficient, k:changepoint location, n = 200, owy:White-Noise Std Dev

Shreyas Kowshik (17MA20039)Under the guic Changepoint Testing 21/04/2022 24 /39



(d) p=0.3, (e) p=0.7, (f) p=0.7,
owy = 0.1,k =100 own = 0.5,k =50 own =1,k =50

Figure: Power Curves comparing G, v/s H, statistics. Green : H,, Red : G,. On
X-axis is plotted the new mean after the changepoint with mean before as u = 1.
On Y-axis is the power of the corresponding statistic’s test.

p:AR(1) coefficient, k:changepoint location, n = 200, owy:White-Noise Std Dev

e Power of H, is better (sharper) if not the same as G, across
different values of model parameters p, oy, k

@ H, shows promise to investigate it further
25 /39
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Normalizing Factor Estimation for
Proposed Statistic
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Variance Estimation

o Want to estimate : a’ Ya = Z;’;i(n_l) y(Hw(r, I, n)

@ Use a kernel based estimate as they are found to be consistent in the
literature :

B Y wlrk AR (/k)

k=—1In

where /, is a bandwidth parameter

@ The above estimate does not account for the presence of a
changepoint i.e. it does nothing special for that

o Consequently, using such an estimate can do good under the null
hypothesis, but need not be that good under the alternative
hypothesis

@ We introduce a variable transformation to address this
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Variance E

Transformation of Series
Given a sample X={Xg, -

, X}, define the following : X, = 1 =D s G

and X, = ﬁ i r+1 X;. The series is then transformed as follows :
Zi = X1 — X,
Z, =X - X,

Zr+1 — Xr+1 - Xr

Zn:)<n_§r

The transformed series Z = {Z;, - - -
autocovariance estimates (h).

Shreyas Kowshik (17MA20039)Under the guic

, Zn} is used for computing the

Changepoint Testing
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iance Estimation

Transformation of Series

This transformation can also be seen as a matrix multiplication

Z = BrX

19T
f = 111 0

Br =

n—r

_ 1 117
0 In—r 11

Thus we have Cov(Z) = BrEBr’
Any consistent estimator of Cov(Z) will converge to the above result
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iance Estimation

Optimization Problem

@ Under the null hypothesis, we want the variance after transformation
to be same as variance of \/nT,(X) i.e. a’ Xa

o Given a sample X = {Xjy,--- , Xy}, andar e {1,--- ,n— 1}, define
M to be the sample covariance matrix using only X and M, the
sample covariance matrix after transforming to Z. Using
Br = Br + Al and fixing a constraint threshold €, with x € R" such
that Brx = a, we have

m/\in ‘aTI\/IXa - (E;X)TMZ(E;X)

— 2
s.t. HBrx—aH <eA>0
2

@ Absolute of quadratic in scalar, thus A\* € R such that it is minimizer
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Variance Estimation

@ The final variance estimate is obtained as x’ M,x
@ Different kernels exist for the smooth estimation of variance

@ We manually select the bandwidth for the kernels by tuning
parameters under the null hypothesis

for |x| <1,
T ted:
runcate kp(x) { 0 otherwise,
. 1-Ix| for x| <1
Bartlett: k 2
artie ar(0)= { otherwise,
1-6x%+6|x> for0< x| <1/2,
Parzen: kpr(x)= 2(1— xl)? for1/2< Ixl <1,
otherwise
Tukey-Hanning: k()= {(1 +cos(mx))/2 forlxl <1,
otherwise,

25 ( sin (6mx/5) cos (6mx/5)

Quadratic Spectral:  kys(x) = rpy— mx/5

Figure: Kernel Formulations
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Variance Estimation

[
|

i)

2|/ Ny .
e e (b) Bartlett Kernel; (c) Bartlett Kernel;
(&) T ::l.;;’;jample Bandwidth=>5.0 Bandwidth—9.0
o 100 iterations 100 iterations
H 3 3
H — ¥ — —
a ) o “ s - § N p N
2 = Ny o~ e ~
(d) QS Kernel: (e) QS Kernel; (f) QS Kernel:
Bandwidth=>5.0 Bandwidth=15.0 Bandwidth=30.0
100 iterations 100 iterations 100 iterations

Figure: Comparision of variances (X-axis : Index r, Y-axis : Variance value). Red
: Sample variance of \/nT,(X), Black : Variance predicted, Blue : Variance
estimated after using transformation, Green : Variance estimated without using
transformation, n = 200, AR(1) process p = 0.7
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Variance Estimation

@ It can be observed that over a wide range of kernels, the estimated
variance with and without the transformation overlap significantly

@ The estimated variance also has significant overlap with the true
theoretical variance

@ This shows promise in terms of using this estimate in the H,, statistic
further

33/39
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iance Estimation : Power of H,

Power Curve Gn (Red) v/s Hn (Green)

Power

Figure: Power Curves (X-axis : Mean Value, Y-axis : Power), Red : Power of G,,,
Green : Power of H, n =200, 450 iterations, AR(1) process p = 0.7, Mean
before change u =1
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Variance Estimation : Power of H,

@ Power of H, with using variance estimation has a sharper rise on
deviation from the null hypothesis as compared to G,

@ This establishes our statistic's performance improvement in the given
setting
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Conclusion and Future Work
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Conclusion and Future Work

° RE,, statistic suffers from non-monotonic power problem due to not
incorporating information from alternative hypothesis

@ G, statistic takes alternative hypothesis into account and provides
monotonic power

@ Proposed self normalizing statistic H,, is found to outperform G, on
a wide range of model parameters under exact simulation

o A variable transformation was introduced to estimate the
normalizer of H,. Its variance estimation was conducted by framing
an optimization problem.

o Power rise was sharper for H, with variance estimation establishing
the improvement with our proposed statistic

o Extensively evaluate on different processes and parameters

@ Study the theoretical properties and convergence of H,

@ Aim to publish the work done
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Thank You
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