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Background
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Time Series

Definition

Time series is a collection of random variables {Xt |t ∈ T} over a time
index set T , which might be a finite, countably infinite or an uncountable
set.

What we observe are the realized values of the time series i.e. the
data set is {X1 = x1, · · · ,Xn = xn}, where the xi s are some numeric
or categorical values.

For example : Population of India, Stock Prices, Rainfall in a city, etc.

Figure: Time Series Data : Stock Prices
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Time Series

Mean and Covariance

The mean µX (t) of a series {Xt} is : µX (t) = E[Xt ]

Covariance (autocovariance) function of {Xt} :
γX (r , s) = Cov(Xr ,Xs) = E [(Xr − µX (r)) (Xs − µX (s))]

Weak Stationarity

A time series {Xt} is said to be weakly stationary if :

µX (t) is independent of t

For every h ∈ Z, γX (t + h, t) is independent of t

Strong Stationarity

A time series {Xt} is said to be strongly stationary if for all
k , h, t1 · · · tk , x1 · · · xk , shift of the time axis does not affect the distribution
i.e. P (Xt1 ≤ x1, · · · ,Xtk ≤ xk) = P (Xt1+h ≤ x1, · · · ,Xtk+h ≤ xk)
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Time Series

AR(p) Process

An AR(p) (autoregressive) process of order p is defined as :

Xt = φ1Xt−1 + · · ·+ φpXt−p + Wt

where Wt ∼ WN(0, σ2) is white noise.

The series {Wt} is a white noise process.

For the rest of this work, we will specifically consider AR processes of
order 1 i.e. AR(1) processes i.e. :

Xt = ρXt−1 + Wt

where |ρ| < 1, ρ 6= 0
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Changepoint Detection
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Changepoint Detection

Detection of the existence of an abrupt change in the distribution of a
time series

Can be change in mean, variance, parameter value, etc.

We focus our attention on detecting a change in mean of a weakly
stationary time series

Figure: Example changepoint in a time series
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Change in Mean Detection

Problem Statement

Given a sample X = {X1, · · · ,Xn} from a time-series {Xt}, we are
interested in testing the following hypothesis :

H0 : E[X1] = · · · = E[Xn]

versus

H1 : E[X1] = · · · = E[Xk∗ ] 6= E[Xk∗+1] = · · · = E[Xn]

where, 1 ≤ k∗ < n is the location of the changepoint and is unknown.

This framework is usually considered in retrospective changepoint
study

The other paradigm is online changepoint analysis
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Change in Mean Detection : Contribution Overview

We survey different statistics for the given problem statement

Propose a new self-normalizing statistic that has a sharper rise in
power upon deviation from the null hypothesis

We show theoretical analysis and simulation studies on the same
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Approaches to Change in Mean
Detection
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KS Statistic

Construction

Given a sample X = {X1, · · · ,Xn} from a weakly stationary time-series
{Xt} and defining X n = 1

n

∑n
i=1 Xi , construct :

Tn(bntc) =
1√
n

bntc∑
t=1

(Xt − X n)

Kolmogorov-Smirnov Statistic

KSn statistic is defined as : KSn = supt∈[0,1]

∣∣∣Tn(bntc)
σ̂n

∣∣∣
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KS Statistic

Kolmogorov-Smirnov Statistic

KSn statistic is defined as : KSn = supt∈[0,1]

∣∣∣Tn(bntc)
σ̂n

∣∣∣
σ̂n is a consistent estimator of σ where
σ2 = limn→∞nVar(X n) = Σk∈Zγ(k) is the long run variance

Estimating σ̂n generally requires using a kernel-based estimate :

σ̂2n =
∑ln

k=−ln γ̂(k)K
(

k
ln

)
Here ln is a bandwidth parameter which can be a function of sample
size n or be chosen from the data

ln as function of sample size : not adaptive to presence of
changepoint

ln that is data-dependent : can introduce bias in estimation of σ2

under alternative hypothesis

Shreyas Kowshik (17MA20039)Under the guidance of : Prof. Buddhananda Banerjee (IITKGP)Changepoint Testing 21/04/2022 13 / 39



Self-Normalizing Statistic

Construct a statistic which is pointwise scaled with its estimated
pointwise standard deviation

This construction can help avoid direct estimation of σ2.

K̃Sn Statistic

K̃Sn statistic is defined as (Shao’10) :

K̃Sn = sup
t∈[0,1]

∣∣∣∣Tn(bntc)
Dn

∣∣∣∣
where D2

n = n−2
∑n

t=1(
∑t

j=1(Xj − X̄n)2).

No need to estimate σ2 : Avoids bandwidth selection
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K̃Sn Statistic

Figure: Power of K̃Sn

The mean of data before changepoint is fixed at 1 and the mean after
the changepoint is varired above.
As one moves away from the null hypothesis, the power decreases
Reason : Dn does not take the alternative into account i.e. the
presence and location of a changepoint

Shreyas Kowshik (17MA20039)Under the guidance of : Prof. Buddhananda Banerjee (IITKGP)Changepoint Testing 21/04/2022 15 / 39



Gn Statistic

Gn Statistic

Gn statistic is defined as :

Tn(bnkc) =
1√
n

[nk]∑
t=1

(Xt − X n)

St1,t2 =

t2∑
j=t1

Xj if t1 ≤ t2, 0 otherwise

Vn(k) = n−2[
k∑

t=1

(S1,t −
t

k
S1,k)2 +

n∑
t=k+1

(St,n −
n − t − 1

n − k
Sk+1,n)2]

Gn = sup
k=1,··· ,n−1

Tn(k)V−1n (k)Tn(k)
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Gn Statistic

Figure: Power of Gn, 0 ≤ µ ≤ 6
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Gn Statistic

Figure: Power of Gn, 6 ≤ µ ≤ 30
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Proposed Statistic
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Proposed Statistic

Hn Statistic

Given a sample X = {X1, · · · ,Xn}, the Hn statistic is defined as :

Tr (X) =
1

n

[(
1− r

n

) r∑
i=1

Xi +
(
− r

n

) n∑
i=r+1

Xi

]

Hn = sup
r=1,··· ,n−1

√
nTr (X)√∑

|h|<n w(r , h, n)γ(h)

where w(r , h, n) is a weighting function the details of which we will soon
derive and r ∈ {1, · · · , n − 1}.

To obtain a normalized form of Hn, we need to compute
Var(
√
nTr (X))
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Proposed Statistic

Variance Computation

Var
[√

nTr (X)
]

=
1

n
Var

[
aTX

]
=

1

n
aTΣa

where : a =

(1− r

n

)
, · · · ,

(
1− r

n

)
︸ ︷︷ ︸

r times

(
,− r

n

)
, · · · ,

(
− r

n

)
︸ ︷︷ ︸

n-r times


T

Σ = Cov(X)

Definining α = r
n , β = l

n for lag l , it can be shown that :

aTΣa =
∑n−1

l=−(n−1) γ(l)w(r , l , n), where :

w(r , l , n) =

{
n
[
α (1− α)− β

(
1− α + α2

)]
, if α ≥ β

−nβα2, if α < β
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Variance Computation in Hn

Figure: Predicted Variance (Black) v/s Sample variance of Tr (X) (Red)
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Variance Computation in Hn

Black curve denotes variance at a particular index r predicted from
the above formula for an AR(1) process

Red curve denotes sample variance at a particular index r obtained by
simulating multiple AR(1) processes and computing Tr (X)

Very significant overlap!
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Power of Hn

Figure: Power Curves comparing Gn v/s Hn statistics. Green : Hn, Red : Gn. On
X-axis is plotted the new mean after the changepoint with mean before as µ = 1.
On Y-axis is the power of the corresponding statistic’s test.
ρ:AR(1) coefficient, k:changepoint location, n = 200, σWN :White-Noise Std Dev
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Power of Hn

Figure: Power Curves comparing Gn v/s Hn statistics. Green : Hn, Red : Gn. On
X-axis is plotted the new mean after the changepoint with mean before as µ = 1.
On Y-axis is the power of the corresponding statistic’s test.
ρ:AR(1) coefficient, k:changepoint location, n = 200, σWN :White-Noise Std Dev

Power of Hn is better (sharper) if not the same as Gn across
different values of model parameters ρ, σWN , k

Hn shows promise to investigate it further
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Normalizing Factor Estimation for
Proposed Statistic
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Variance Estimation

Want to estimate : aTΣa =
∑n−1

l=−(n−1) γ(l)w(r , l , n)

Use a kernel based estimate as they are found to be consistent in the
literature :

σ̂2n =
ln∑

k=−ln

w(r , k, n)γ̂(k)K
(
k

ln

)
where ln is a bandwidth parameter

The above estimate does not account for the presence of a
changepoint i.e. it does nothing special for that

Consequently, using such an estimate can do good under the null
hypothesis, but need not be that good under the alternative
hypothesis

We introduce a variable transformation to address this
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Variance Estimation

Transformation of Series

Given a sample X = {X1, · · · ,Xn}, define the following : X r = 1
r

∑r
i=1 Xi

and X r = 1
n−r

∑n
i=r+1 Xi . The series is then transformed as follows :

Z1 = X1 − X r

...

Zr = Xr − X r

Zr+1 = Xr+1 − X r

...

Zn = Xn − X r

The transformed series Z = {Z1, · · · ,Zn} is used for computing the
autocovariance estimates γ̂(h).
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Variance Estimation

Transformation of Series

This transformation can also be seen as a matrix multiplication

Z = BrX

Br =


Ir − 1

r 11T

. . .
0

0 In−r − 1
n−r 11T

. . .


Thus we have Cov(Z) = BrΣBrT

Any consistent estimator of Cov(Z) will converge to the above result
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Variance Estimation

Optimization Problem

Under the null hypothesis, we want the variance after transformation
to be same as variance of

√
nTr (X) i.e. aTΣa

Given a sample X = {X1, · · · ,Xn}, and a r ∈ {1, · · · , n − 1}, define
Mx to be the sample covariance matrix using only X and Mz the
sample covariance matrix after transforming to Z. Using
B̃r = Br + λI and fixing a constraint threshold ε, with x ∈ Rn such
that B̃rx = a, we have

min
λ

∣∣∣aTMxa− (B̃rx)TMz(B̃rx)
∣∣∣

s.t.
∥∥∥B̃rx − a

∥∥∥2
2
< ε, λ > 0

Absolute of quadratic in scalar, thus ∃λ∗ ∈ R such that it is minimizer
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Variance Estimation

The final variance estimate is obtained as xTMzx

Different kernels exist for the smooth estimation of variance

We manually select the bandwidth for the kernels by tuning
parameters under the null hypothesis

Figure: Kernel Formulations
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Variance Estimation

Figure: Comparision of variances (X-axis : Index r , Y-axis : Variance value). Red
: Sample variance of

√
nTr (X), Black : Variance predicted, Blue : Variance

estimated after using transformation, Green : Variance estimated without using
transformation, n = 200, AR(1) process ρ = 0.7
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Variance Estimation

It can be observed that over a wide range of kernels, the estimated
variance with and without the transformation overlap significantly

The estimated variance also has significant overlap with the true
theoretical variance

This shows promise in terms of using this estimate in the Hn statistic
further
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Variance Estimation : Power of Hn

Figure: Power Curves (X-axis : Mean Value, Y-axis : Power), Red : Power of Gn,
Green : Power of Hn n = 200, 450 iterations, AR(1) process ρ = 0.7, Mean
before change µ = 1
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Variance Estimation : Power of Hn

Power of Hn with using variance estimation has a sharper rise on
deviation from the null hypothesis as compared to Gn

This establishes our statistic’s performance improvement in the given
setting
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Conclusion and Future Work
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Conclusion and Future Work

K̃Sn statistic suffers from non-monotonic power problem due to not
incorporating information from alternative hypothesis
Gn statistic takes alternative hypothesis into account and provides
monotonic power
Proposed self normalizing statistic Hn is found to outperform Gn on
a wide range of model parameters under exact simulation
A variable transformation was introduced to estimate the
normalizer of Hn. Its variance estimation was conducted by framing
an optimization problem.
Power rise was sharper for Hn with variance estimation establishing
the improvement with our proposed statistic

Future Work

Extensively evaluate on different processes and parameters

Study the theoretical properties and convergence of Hn

Aim to publish the work done
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Thank You
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