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ABSTRACT

Change-point detection in a time series is usually dealt with as a testing problem to

examine its existence at an intermediate point of a given sequence. Specifically, we

consider the detection of a mean-shift as a test for change in parameter. Standard

approaches for this involve obtaining a consistent estimate for the long-run variance

which is a nuisance parameter. This estimate requires selecting a bandwidth param-

eter that can be data-dependent. However, under the presence of a change-point,

the bandwidth estimate can be severely biased and can lead to non-monotonic power

on deviation from the null hypothesis. To circumvent this, self-normalization based

test-statistics have been introduced which have monotonic power under the alterna-

tive hypothesis. In this work, we propose a statistic that has a sharper power rise

on deviation from the null hypothesis compared to the existing ones. We evaluate its

performance with exact simulation and theoretically analyze its features. Finally, we

discuss approaches to estimate the variance term involved in the statistic and show

simulation studies on the same. By obtaining sharper power rise for our proposed

statistic, we validate the improvement of our proposed statistic in a general setting.

Keywords: Change-Point, Mean-shift, Self-normalization, long-run variance.
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Chapter 1

Introduction

A Time-Series is a collection of random variables {Xt|t ∈ T} over a time index

set T , which might be a finite, countably infinite or an uncountable set. What

we observe in reality are realizations of these random variables i.e. the data set

is {X1 = x1, · · · , Xn = xn}, where the xis are some numeric or categorical values.

A lot of real-world data can be naturally modeled as a time-series. For example :

The population of India, Price of a stock, Number of daily visitors to a museum, etc.

Figure 1.1a shows an example of a time-series : a stock price varying over time.

The mean of a time series {Xt} is defined as : µ(t) = E
[
Xt]

]
. The autocovariance

function is defined as : γX(r, s) = Cov(Xr, Xs) = E
[(
Xr − µX(r)

) (
Xs − µX(s)

)]
. If

a time-series follows some specific mathematical properties, analysis and forecasting

it becomes easier. Time-Series analysis involves using such properties to develop tests

and estimates of the parameters involved and analysing them in such settings.

A change-point is said to occur in a time-series if the distribution of the series

changes abruptly at some time-step. For instance, during a week, the price of a

stock may abruptly change its mean, there may be a security attack on a networked

system affecting its statistics, etc. The change can be for instance in the mean,

the variance, etc. Detection of such structural changes is extremely important in

risk-sensitive applications. For instance, if an automated-trading-system uses some

time-series model to forecast future prices and decide what trades to execute, a change

in distribution can severely effect its predictions and lead to massive losses for the

firm. If the output quality of a production process changes sharply due to a defect

and remains undetected, all following samples will get wasted. Thus detecting if a

change has occurred in the series becomes extremely important. Figure 1.1b shows

1



(a) Time Series Example : Stock Price data

(b) Change in Mean in a Time Series

Figure 1.1: Time Series and Changepoint Example

an example of a change in mean occurring in a time series. The figure on the left is

very extreme in terms of the magnitude of change. However the change in mean is

much more subtle in the figure on the right. One thus needs to develop statistical

tests to detect such subtle changes reliably.

There exists a lot of literature on applying change-point detection in real-world

settings. Aue et al. (2012) study change-point detection in the context of capital-

asset-pricing of a portfolio. They test whether the β ratios of financial assets are

stable overtime before using them in their portfolio optimization model. Chu et al.

(1996) develop tests for high-frequency data such as streaming stock prices in high-

frequency trading. Page (1954) develop change-point testing for detecting changes in

the quality of an output of a continuous production process.

In the next section we highlight the problem statement and describe some ap-

proaches for detecting the change in the mean of a time series.

1.1 Literature Review

By virtue of tradition, an existence of change-point has been formulated as a testing

of hypothesis problem by Aue & Horváth (2013). The null hypothesis denotes the

2



absence of any change and the alternative denotes at least one change occurs in the

distribution of the series at an intermediate point. Under the assumption of i.i.d.

samples, Csorgo & Horváth (1997) and Darkhovski (1994) provide various methods

for testing for a change-point. However, these ideas are easily not extendable when

there is temporal dependence in the series. Suitable modifications are needed to make

them work as can be seen from Tang & MacNeill (1993).

While testing for a change in mean in a weakly stationary time series, one needs to

estimate the long-run variance of the series. This involves a kernel based estimate and

requires selection of a bandwidth parameter. Andrews (1991) lists different kernels

for estimating the long-run variance and methods to properly select the bandwidth of

such kernels. This gives a data-dependent bandwidth. However, under the alternative

hypothesis, Shao & Zhang (2010) argue that this can lead to the non-monotonic power

problem. In other words, as one deviates from the null-hypothesis further away,

the power of the test keeps on decreasing. This is highly undesirable foe a testing

methodology. To overcome this, Shao & Zhang (2010) propose a self-normalized test

statistic, extending the self-normalization idea from Lobato (2001) and Shao (2010).

However, they show a naive extension is still an issue and thus derive a new test-

statistic. This new statistic takes into consideration the presence of a change-point

while doing the normalization. Moreover, it also generalises the test to cases of change

in median and spectrum.

The question that we thus pose is : Is there a better statistic to test for a mean

shift, in terms of having a sharper power rise on deviation from the null hypothesis ?

We propose a better statistic and compare it with the statistic provided by Shao &

Zhang (2010) and further theoretical and simulation analysis of this statistic is done.

3



Chapter 2

Changepoint detection in Time
Series

2.1 Problem Statement and Notation

Change-point detection is a problem of identification of the existence of an abrupt

change in the distribution of a time series. This can be formulated as a hypothesis

testing problem. The null hypothesis specifies that there is no change. The alternative

hypothesis can be framed in multiple ways. For instance it can specify there is only

one change. It can also specify that there are multiple change-points in the series.

Specifically, for the purpose of this work, we concentrate on testing for a change in

mean of a univariate series with only one change-point. Formally, given a random

sample X1 · · ·Xn from a weakly stationary time series {Xt}, we are interested in

testing the following :

H0 : E[X1] = · · · = E[Xn]

vs

H1 : E[X1] = · · · = E[Xk∗ ] ̸= E[Xk∗+1] = · · · = E[Xn]

where, 1 ≤ k∗ < n is unknown.

A class of statistics to detect change in mean is built upon the cumulative-sum

(CUSUM) process. Defining Xn = 1
n

∑n
i=1

Xi the CUSUM process is defined for {Xt}
as :

4



Tn([nt]) =
1√
n

[nt]∑
t=1

(Xt −Xn) (2.1)

Under appropriate moment and weak dependence assumptions as in Phillips (1987),

the following holds under the null hypothesis :

Tn(⌊nt⌋) =⇒ σ(B(t)− tB(1)) (2.2)

where, ‘ =⇒ ’ denotes weak convrgence in D [0, 1] endowed with the Skorokhod

topology, σ2 = lim
n→∞

nVar(Xn) =
∑
h∈Z

γ(h) is the long run variance and B(r) is the

one-dimensional standard Brownian motion on [0, 1] and k ∈ [0, 1]. This defines the

Kolmogorov-Smirnov Test Statistic as :

KSn = sup
t∈[0,1]

∣∣∣∣Tn(⌊nt⌋)
σ̂n

∣∣∣∣ (2.3)

where σ̂n is a consistent estimator of σ.

Some kernel based methods are commonly used to estimate σ2 by selecting a data-

dependent bandwidth parameter. The estimates of the bandwidth can be heavily

biased under the alternative hypothesis. This may lead to non-monotonic power

variation upon deviation from the null hypothesis; see Shao & Zhang (2010).

2.2 Self Normalizing Statistics

Self normalization in simple words is the process of normalizing a statistic with its

own point-wise standard deviation. A common example of a self-normalized process

is the student-t statistic. Shao (2010) highlight using self-normalization in the context

of time series data. This idea is then extended by Shao & Zhang (2010) to develop a

statistic for detecting a change in mean.

Thus, to avoid selection of a bandwidth parameter in the estimation of σ̂n, one

can use a self-normalizing procedure to compute the statistic :

K̃Sn = sup
t∈[0,1]

∣∣∣∣Tn(⌊nt⌋)
Dn

∣∣∣∣ (2.4)
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where D2
n = n−2

∑n
t=1

(
∑t

j=1(Xj − X̄n)
2). This avoids direct estimation of σ2.

This statistic however, still suffers from the non-monotonic power problem. This

is due to its normalizer i.e. Dn not incorporating the change-point alternative. To

overcome this, the following statistic was proposed in Shao & Zhang (2010) :

St1,t2 =

t2∑
j=t1

Xj if t1 ≤ t2, 0 otherwise (2.5)

Vn(k) = n−2[
k∑

t=1

(S1,t − (t/k)S1,k)
2 +

n∑
t=k+1

(St,n − (n− t− 1)/(n− k)Sk+1,n)
2] (2.6)

Gn = sup
k=1,··· ,n−1

Tn(k)V
−1
n (k)Tn(k) (2.7)

Under a set of moment and weak dependence assumptions as highlighted in Phillips

(1987), it can be shown that :

Gn
D−→ sup

r∈[0,1]
(B(r)− rB(1))′V −1(r)(B(r)− rB(1))

V (r) =

∫ r

0

(B(s)− (s/r)B(r))2ds+

∫ 1

r

(B(1)−B(s)− (1− s)/(1− r)(B(1)−B(r)))2ds

The key property of this statistic is that the denominator varies according to

k which was not the case with K̃Sn. Thus this statistic normalizes each location

differently which is beneficial when a change-point is actually present. We verified in

our simulations that this does not suffer from the non-monotonic power problem like

K̃Sn.

2.3 Simulations

For verifying the power of the test as one deviates from the null hypothesis, monte

carlo simulations were run. The statistics were first simulated under the null hy-

pothesis for 10000 iterations and cutoff values for the asymptotic distributions were

obtained at 95% levels. These were then used to obtain the power for each of the

statistics. We assumed the following data generating AR(1) process :

Xt =

{
1 + ρst−1 + ϵt, if 1 ≤ t ≤ N/2

η + ρst−1 + ϵt, if N/2 ≤ t ≤ N

where ϵt ∼ N(0, 1).

6



(a) Gn power;η ≤ 5 (b) Gn power;5 ≤ η ≤ 30 (c) K̃Sn power;η ≤ 5

Figure 2.1: Power curves for Gn, K̃Sn. X-axis : η, Y-axis : Power of test

We vary η in the range [0, 30]. η = 1 denotes the null hypothesis and the other

values denote a deviation from the null hypothesis. N = 200, ρ = 0.7 were used for

the sample size and the AR(1) coefficient. The results of this simulation are shown

in Figure 2.1.

It is clearly evident that the power of the K̃Sn statistic decreases as the value of

η moves away from η = 1 which is highly undesirable. On the other hand, Gn has a

monotonic power curve which increases to 1.0. As one moves further away from the

null hypothesis, the tendency to reject the null hypothesis also increases in this case.

7



Chapter 3

Proposed Self-Normalizing
Test-Statistic

3.1 Introduction

We propose a new test statistic that empirically outperforms the Gn statistic as used

previously. First, the basic form of the statistic is introduced after which we look at

some theoretical characteristics of the statistic and refine it further.

Let X = {X1, · · · , Xn} be n samples from a time series. Then, the proposal takes

the following form :

Tr(X) =
1

n

(1− r

n

) r∑
i=1

Xi +

(
− r

n

) n∑
i=r+1

Xi


Hn = sup

r=1,··· ,n−1

√
nTr(X)√∑

|h|<nw(r, h, n)γ(h)

where w(r, h, n) is a weighting function the details of which are available in section

3.4 and r ∈ {1, · · · , n− 1}. This statistic has a different normalizer compared to Gn,

with the weighting function introduced as a consequence of the form of V ar(Tr(X)).

We next show exact simulation studies of using this statistic on AR(1) processes and

analyse the power curves.
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(a) ρ = 0.7,
σWN = 0.1, k = 100

(b) ρ = 0.7,
σWN = 0.5, k = 100

(c) ρ = 0.7,
σWN = 1, k = 100

(d) ρ = 0.3,
σWN = 0.1, k = 100

(e) ρ = 0.7,
σWN = 0.5, k = 50

(f) ρ = 0.7,
σWN = 1, k = 50

Figure 3.1: Power Curves comparing Gn v/s Hn statistics. Green : Hn, Red : Gn.
On X-axis is plotted the new mean after the change-point with mean before as µ = 1.
On Y-axis is the power of the corresponding statistic’s test.
ρ:AR(1) coefficient, k:change-point location, n = 200, σWN :White-Noise Std Devia-
tion

3.2 Simluation Studies

We simulate Hn under the null-hypothesis for 10000 iterations and obtain the cutoff

values of the empirical distribution at 95% level. Then these are used to construct

the power curve under the alternative hypothesis. As before, we keep the mean under

the null hypothesis as µ = 1 and vary under the alternative hypothesis as 0 ≤ µ ≤ 2.

The process simulated is an AR(1) process. A sample size of n = 200 is used and the

change-point is varied as k ∈ {50, 100}. The variance parameter of the white-noise

process is also varied as σWN ∈ {0.1, 0.5, 1}.

9



3.3 Experimental Analysis

The results of the simulation are shown in Figure 3.1. The power change for Hn is

much sharper in general compared to Gn as one deviates from the null-hypothesis.

This is particularly evident over a wide range of varying parameters. This affirms that

there is good reason to investigate Hn and evaluate its performance more extensively.

Figure 3.2: Plot of f(α, β) = w(nα,nβ,n)
n

as a function of α = r
n
, β = l

n
for lag l.

3.4 Theoretical Analysis

We now focus on the mathematical properties of the above statistic. The idea is to

obtain a normalization of the statistic by dividing the numerator by its own variance.

Observe that E[Tr(X)] = 0. We obtain the variance of Tr(X) as follows :

V ar
[√

nTr(X)
]
=

1

n
V ar

[
aTX

]
=

1

n
aTΣa (3.1)

where a is a vector given by :

a =


(
1− r

n

)
, · · · ,

(
1− r

n

)
︸ ︷︷ ︸

r times

,

(
− r

n

)
, · · · ,

(
− r

n

)
︸ ︷︷ ︸

n-r times


T

10



and Σ is the covariance matrix of the vector X

Σ =


γ(0) γ(1) . . . γ(n− 1)
γ(1) γ(0) . . . γ(n− 2)
...

... . . .
...

...
... . . .

...
γ(n− 1) . . . . . . γ(0)


Some simple calculations show that :

aTΣa = γ(0)

 n∑
i=1

a2i

+ 2
n−1∑
l=1

γ(l)

n−l∑
i=1

aiai+l


We define α = r

n
and β = l

n
for a lag l and the coefficient of γ(l) in the above

summation as w(r, l, n) for a fixed r. Then,

w(r, 0, n) =
n∑

i=1

a2i = r

(
1− r

n

)2

+ (n− r)

(
r

n

)2

= nα(1− α) [On Simplifying]

Let a = 1 − α and b = −α. These are the co-efficients of the vector a. Then,

w(r, l, n) can be shown to be :

w(r, l, n) =
n−l∑
i=1

aiai+l =
r∑

i=1

a21{i+l≤r} +
r∑

i=1

ab1{r<i+l} +
n−l∑

i=r+1

b21{i+l≤n}

where 1 is the indicator function that takes value 1 if its condition is true and 0

otherwise. The above equation can be further simplified into the following cases :

w(r, l, n) =

n
[
α (1− α)− β

(
1− α + α2

)]
, if α ≥ β

−nβα2, if α < β

Thus, the variance of the numerator can effectively be expressed as :

V ar[
√
nTr(X)] = aTΣa =

n−1∑
l=−(n−1)

γ(l)w(r, l, n) (3.2)

where w(r, l, n) is the coefficient of γ(l) in the summation above.

11



A plot of f(α, β) = w(nα,nβ,n)
n

is given in figure 3.2. It can be seen that for small

values of β, as α varies in [0, 1], the value of f first increases and then decreases. This

is the sort of behavior that will also be more practical. This is because one would

generally use kernel based estimates for estimation of
∑

l
w(r, l, n)γ(l) and the cutoff

lag is generally of the orders of [n1/2], [n1/3], etc. leading to large values of β being

zeroed out in the estimate.

In the next chapter, we will validate Equation 3.2 empirically by simulating
√
nTr(X) and obtaining its sample variance.

12



Chapter 4

Normalizing Factor of Proposed
Statistic

4.1 Introduction

The variance of the proposed statistic’s numerator
√
nTr(X) is given by equation 3.2.

It involves a term of
∑

l
w(r, l, n)γ(l). What is really of interest here is the weighted

summation of γ(h) rather than the individual values and we try to obtain an estimate

of this.

If one has a knowledge of the generative process underlying the series, it can

be possible to obtain the auto-covariances γ(l) in closed form. However this is not

practical as one never knows what the underlying process will look like beforehand.

All one can thus do is to get an estimate γ̂(l) such that it is consistent. One naive

way to estimate γ(l) is to use the sample auto-covariances as :

γ̂(l) =
1

n

n−|l|∑
j=1

(
Xj −Xn

)(
Xj+|l| −Xn

)
(4.1)

for each lag l. However this leads to an inconsistent estimate of the long run variance∑
l
γ(l). What is generally done in the literature is to smooth the estimates out using

a kernel function :

σ̂2
n =

ln∑
k=−ln

γ̂(k)K
(
k

ln

)
(4.2)

13



n ρ =0.2 ρ =0.3 ρ =0.5 ρ =0.7 ρ =0.9 ρ =0.95
32 0.7 1.2 2.4 4.3 10.2 16.6
64 0.9 1.5 3 5.4 12.9 20.9
128 1.1 1.8 3.8 6.8 16.2 26.3
256 1.4 2.3 4.8 8.6 20.4 33.1
512 1.7 2.9 6 10.9 25.7 41.7
1024 2.1 3.7 7.6 13.7 32.4 52.6

(a) Bartlett Kernel Bandwidth Values

n ρ =0.2 ρ =0.3 ρ =0.5 ρ =0.7 ρ =0.9 ρ =0.95
32 1.0 1.4 2.5 4.5 12.1 21.6
64 1.1 1.6 2.9 5.2 13.9 24.8
128 1.3 1.9 3.3 5.9 16.0 28.5
256 1.5 2.2 3.8 6.8 18.4 32.7
512 1.7 2.5 4.4 7.8 21.1 37.5
1024 2.0 2.9 5.0 9.0 24.2 43.1

(b) QS Kernel Bandwidth Values

Table 4.1: Bandwidth values for a AR(1) process with parameter ρ for Bartlett and
Quadratic-Spectral Kernels.

Figure 4.1: Kernel Formulations from Andrews (1991)

where K(.) is a kernel function and l = ln is a bandwidth parameter. By appropriate

choice of the bandwidth ln and the kernel, one can get consistent estimates of the

long run variance.

Different kernels exist in literature such as Bartlett, Truncated, etc. Figure 4.1

as given in Andrews (1991) provides a wide variety of kernels. There are also sophis-

ticated techniques to automatically select a suitable bandwidth given the sampled

data. Andrews (1991) provide one such approach for bandwidth selection . Table 4.1

provides the automatically selected bandwidth values for the Bartlett and Quadratic

Spectral kernels that are asymptotically optimal. For the rest of our work, we will be

using this approach for obtaining the kernel based estimates.

One limitation that is still not addressed in the long-run-variance estimation,

specific to our problem setup, is that there is not any assumption made by the statistic

14



about the presence of a change-point. To address this, we propose to use a transformed

series for obtaining the sample auto-covariances.

4.2 Transformation of Series

Given a sample X = {X1, · · · , Xn}, define the following for r ∈ {1, · · · , n− 1}

Xr =
1

r

r∑
i=1

Xi and Xr =
1

n− r

n∑
i=r+1

Xi

The series is then transformed as follows :

Z1 = X1 −Xr

...

Zr = Xr −Xr

Zr+1 = Xr+1 −Xr

...

Zn = Xn −Xr

The transformed series Z = {Z1, · · · , Zn} is used for computing the autocovariance

estimates γ̂(h) as defined in the previous section.

The above transformation is intuitive to understand. For each location r, the

mean of the sample points before that location and after that location are used to

center the series. If there is a change in mean in the series, the values of Xr and

Xr will differ significantly at the change-point. Thus, this series tries to incorporate

the effect of the change-point in its computation. Without the use of this, the auto-

covariance estimates are bound to perform poorly as one deviates further away from

the null hypothesis.

The above transformation can also be written as a matrix multiplication.

Z = BrX

Br =


Ir − 1

r
11T

. . .
0

0 . . .
In−r − 1

n−r
11T
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4.3 Variance Estimation using Transformed Series

We have

Cov(Z) = BrΣBrT

Any consistent estimator of the covariance matrix of the transformed series will

converge to the above result. Under the null hypothesis, we want the variance of
√
nTr(X) estimated using the transformed series to be the same as without using the

transformation.

More formally, given Cov(X) = Σ, we want to get the same variance of the

numerator using Cov(Z). One way to do this can be to create a quadratic form

using a random vector x ∈ Rn such that its value matches the variance without

transformation. Mathematically speaking

xTCov(Z)x− aTΣa = 0

xTBrΣBrTx− aTΣa = 0

(xTBr − aT )Σ(BrTx− a) = 0

Using the fact that Br = BrT the above identity holds when

Brx = a (4.3)

Observe that Bra = 0 and hence a lies in the null space of Br and thus Brx = a

has no solution. To circumvent this issue, we propose adding a regularizing factor to

Br to ensure that the system becomes consistent. To do so, we use the help of the

following lemma as proved in Farid (2011) Lemma 2.1.

Lemma 4.3.1 A strictly diagonally dominant matrix is invertible.

Thus, we define B̃r = Br + λI where I is the identity matrix and λ > 0, λ ∈ R.

Using lemma 4.3.1, we can see that for each row, to ensure diagonal dominance the

condition looks like |1 − 1
r
+ λ| > r−1

r
. Thus there exists a λ > 0 such that B̃r is

diagonally dominant. Thus we can say that the given system can be made consistent

for a given λ > 0. Thus we conclude that B̃rx = a forms a consistent system.
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However this changes the transformation from what was formulated. In order to

get to the same variance estimate under the null hypothesis, we pose an optimization

problem. Given a sample X = {X1, · · · , Xn}, and a r ∈ {1, · · · , n − 1}, define

Mx to be the sample covariance matrix using only X and Mz the sample covariance

matrix after transforming the sample to a series Z. Using B̃r = Br + λI and fixing

a constraint threshold ϵ, we have

min
λ

∣∣∣aTMxa− (B̃rx)TMz(B̃rx)
∣∣∣

s.t.
∥∥∥B̃rx− a

∥∥∥2

2
< ϵ

λ > 0

This is a quadratic optimization problem in a scalar λ. Since it involves mini-

mization of the absolute value of a quadratic in a scalar, it is guaranteed to have

minimizer. Thus there exists a λ∗ ∈ R such that λ∗ is the minimizer of the above

optimization problem.
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Chapter 5

Simulation Studies with Variance
Estimation

5.1 Experiments

We now describe in detail the experiments performed along with variance estimation.

First, we simulate the closed form expression of equation 3.2 and compare it with

the simulated variance of the numerator of Hn i.e.
√
nTr(X). The results of this

simulation are given in Figure 5.2a. This was obtained by simulating
√
nTr(X) for

5000 iterations under the null-hypothesis for data from an AR(1) process with ρ = 0.7.

As can be clearly seen, both curves overlap significantly, thus affirming our hypothesis

that equation 3.2 is correct.

Next we try to estimate the variances using the transformed series. Simulations

are run for 500 iterations for generating the above statistic values. Different kernels

have been tried for the same : Quadratic Spectral Kernel and Bartlett Kernel and the

bandwidth was manually selected for the given parameters. The λ value was obtained

by doing a grid search in the range [0.1, 3.0].

The results are shown in Figure 5.1. It is clearly evident that by tuning the kernel

bandwidth parameter, we get variance estimates that are very close to the true value

with the Bartlett kernel. However the value of the bandwidth becomes critical in

order to get a good estimate. Even with using the Quadratic Spectral kernel, we

are able to get estimates that are quite close to the true value, the difference being

explained by the finite sample size and small number of iterations.

We now proceed to check the power curves obtained by using the above variance

estimation procedure. Since the variance estimates are accurate, we expect the power
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(a) True v/s Sample
variance

(b) Bartlett Kernel;
Bandwidth=5.0
100 iterations

(c) Bartlett Kernel;
Bandwidth=9.0
100 iterations

(d) QS Kernel;
Bandwidth=5.0
100 iterations

(e) QS Kernel;
Bandwidth=15.0
100 iterations

(f) QS Kernel;
Bandwidth=30.0
100 iterations

Figure 5.1: Comparision of variances (X-axis : Index r, Y-axis : Variance value). Red
: Sample variance of

√
nTr(X), Black : Variance predicted from equation 3.2, Blue

: Variance predicted after using transformation with given kernel, Green : Variance
predicted without using transformation with given kernel. n = 200

rise to be sharper for our proposed statistic Hn compared to Gn. The results are

shown in Figure 5.2.

The null hypothesis is considered at a mean of µ = 1.0 and the mean is varied

in the range [0.0, 2.0]. Grid size for the mean variation is varied as {0.1, 0.25}. The

number of iterations under the alternative hypothesis is mentioned in the figure label.
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(a) Grid size=0.1
450 iterations

(b) Grid size=0.25
500 iterations

(c) Grid size=0.25
250 iterations

Figure 5.2: Power Curves (X-axis : Mean Value, Y-axis : Power), Red : Power of Gn,
Green : Power of Hn n = 200

From Figure 5.2 it is clear that Hn outperforms Gn in terms of the power rise

on deviation from the null hypothesis. This is checked across two different grid size

values. The slightly discontinous nature of the curves is owing to the grid size value

which can further be reduced and the number of iterations which are slightly on the

lower side for these experiments. Given enough time and compute, these simulations

can be scaled up to higher number of iterations and finer grids to get much sharper

and continuous power curves as obtained in Figure 3.1.
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Chapter 6

Conclusion and Future Work

We have surveyed and experimented with multiple test-statistics for mean-shift de-

tection in a time-series. The KSn statistic is a naive self-normalizing statistic that

does not take into account the change-point which might be present under the al-

ternative hypothesis. Consequently it suffers from non-monotonic power as we have

highlighted. To overcome this, the Gn statistic was introduced which has monotonic

power on deviation from the null hypothesis. We then proposed a new statistic that

has a sharper power curve than the Gn statistic. Simulation studies were done to

confirm this. Consequently the self-normalizer for this statistic was derived and was

validated through simulations. We then proposed an approach to obtain a robust

estimate of the variance term using a novel transformation to aid the given formula-

tion. Using this estimate we ran simulations and validated our hypothesis that our

proposed statistic Hn has a sharper power rise on deviation from null hypothesis on

comparing it with the Gn statistic.

Future work would be to run simulations with varying types of time series such

as ARMA processes and real world data. More work needs to be done on obtaining

a closed from expression for the solution of the optimization problem posed in order

to do variance estimation. This would reduce computation time by a huge margin

and help scale up simulations. Another promising direction of future work would be

to consider the given formulation in the Bayesian paradigm and see if there is any

improvement in the overall performance.
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