
Portfolio Optimization-Based Stock Prediction Using
Long-Short Term Memory Network in Quantitative Trading

Authors: Van-Dai Ta, Chuan-Ming Liu, Direselign Addis Tadesse

Journal: Applied Sciences, Received: 1 December 2019; Accepted: 4 January
2020; Published: 7 January 2020

Project Report Submitted by
Shreyas Kowshik (17MA20039)

Yaksh Patel (17ME3FP01)

in partial fulfillment of the requirements for subject Optimization Methods in
Finance as Term Project

Under guidance of
Prof. Geetanjali Panda

Department of Mathematics, IIT Kharagpur

November, 2021



METHODOLOGY
The following was the overall approach :

1. The data was first split into training-validation-testing sets. The size of the split
was a hyperparameter and was varied between 1%-10% of the total data size
across iterations.

2. Based on the split, predictive models were fit on the training data. The
following three models were fit :

a. LSTM
b. Linear Regression
c. Support Vector Regression

3. After fitting these models, based on the forecasted prices, the top 4 stocks
having the best average returns on predictions were selected to form the
portfolio. Portfolio allocation was then performed on each of these.

4. The hypothesis to be tested was the following : If one uses future forecasts in
the process of portfolio allocation and selects assets based on these forecasts,
can one get an overall better return, risk-adjusted return in future. To thus test
this, Markowitz models were built over two cases :

a. Using the training-validation and predicted values using the forecasting
models

b. Using the training-validation data only. This case accounts for the
situation when one does not any forecast for the future

5. Markowitz models optimize the portfolio allocation scheme by solving a
Mean-Variance Optimization problem. To further do an ablation study,
equal-weighted portfolios were constructed with equal weights allocated for
each asset. These were then compared with the Markowitz model weights.

6. Based on the weights obtained, metrics of returns, risks and sharpe-ratios were
computed on the test data. These were then compared and plotted as shown in
the plots below.

Data Preprocessing :
Data was standardized by subtracting mean and dividing by standard deviation of the
training set. This is to aid in training and fitting of the prediction models.

Training of Models :
LSTM based approach: LSTM is a deep learning based neural network architecture
that is used for sequential decision making problems. It has a complicated
mathematical structure designed in order to avoid vanishing and exploding gradient



problems([1]). In our setup, we used a window-size of 5 timesteps to look at, in order
to predict one time step into the future. One of the requirements for deep-learning
models like a LSTM to do well is the presence of large amounts of data. The more the
data available for training, the better these models do. Moreover, these models have a
drawback of being non-explainable in their decisions. In other words, there is no
standard way to statistically test if these models are necessarily going wrong during
prediction phases. Though more sophisticated approaches combining bayesian
statistics and neural networks([2]) have recently come up, using these was out of
scope of this work. This was also not considered in the original paper.

LR and SVR: Linear Regression and Support Vector Regression were applied with a
window-size of 5 for forecasting one time step into the future. These models have the
advantage of being statistically interpretable, in the sense that any mistakes made by
these models can be mathematically analysed. This property is of utmost importance
in finance since there is a lot of money at stake during the trading period and it is
extremely significant to know if one can trust the predictions made.

Portfolio Construction :
A total of 10 different portfolios were constructed varying the forecasted period from
1%-10% of the total data points. For instance if the total dataset has 250 timestamps,
the forecasting horizon is varied from 3 days to 25 days. The top 4 performing stocks
were selected from each and portfolio allocations were done.

For training the LSTM models, we used early-stopping using the validation set to
prevent overfitting of the models to the training data. A hidden layer size of 200 was
used for the LSTM model. The models were trained for 3000 epochs or iterations.
This process was quite time consuming since LSTM is a deep-learning based
approach which requires a lot of computation to run. Since we did not have any
servers/GPU-compute to speed things up, we ran everything locally, which took a lot
of time for the training of the LSTM models.

For the Markowitz model, we assume no constraint on return. Short selling was
allowed and the only constraint on the weights was that they must sum to one.



EXPERIMENTS

Dataset - 1

Markowitz Portfolio

Fig 1. LSTM

Fig 2. LR

Fig 3. SVR



Equal-Weighted Portfolio

Fig 4. LSTM

Fig 5. LR

Fig 6. SVR



Forecast on Test data Training Loss Forecasts on training set

Validation loss Forecasts on validation set

Fig 7. LSTM P1 (1%) Plots

Forecast on Test data Training Loss Forecasts on training set

Validation loss Forecasts on validation set

Fig 8. LSTM P10 (10%) Plots



Forecast on training set Forecast on test set
Fig 9. LR P1(1%) Plots

Forecast on training set Forecast on test set
Fig 10. LR P10(10%) Plots

Forecast on training set Forecast on test set

Fig 11. SVR P1(1%) Plots



Forecast on training set Forecast on test set
Fig 12. SVR P10(10%) Plots

Dataset - 2

Markowitz Model

Fig 13. LSTM

Fig 14. LR



Fig 15. SVR

Equal-Weighted Portfolio

Fig 16. LSTM

Fig 17. LR

Fig 18. SVR



Forecast on Test data Training Loss Forecasts on training set

Validation loss Forecasts on validation set

Fig 19. LSTM P1 (1%) Plots

Forecast on Test data Training Loss Forecasts on training set

Validation loss Forecasts on validation set

Fig 20. LSTM P10 (10%) Plots



Forecast on training set Forecast on test set

Fig 21. LR P1(1%) Plots

Forecast on training set Forecast on test set
Fig 22. LR P10(10%) Plots

Forecast on training set Forecast on test set



Fig 23. SVR P1(1%) Plots

Forecast on training set Forecast on test set
Fig 24. SVR P10(10%) Plots



CONCLUSION
● Forecasts: Looking at the predictions for the P1 and P10 portfolios, we can see

that all models fit the training data pretty well. LSTM and LR fit it almost
perfectly while SVR is not that accurate there. On the test sets, the forecasts of
LR are the best, followed by LSTM and SVR. This can be explained by the size
of the dataset that we used. LSTMs need a lot of data to capture the patterns
otherwise leading to an overparameterized model that can lead to overfitting.
This is what we believe has been the cause of the poorer performance of
LSTMs compared to LR here. Linear Regression on the other hand is a
statistical fitting procedure that is well parameterized for the given prediction
problem, as is also evident in the results. These predictions clearly do have a
strong correlation with the test-set portfolio evaluation metrics as we see. We
believe by increasing the amount of data for training, the LSTM model should
eventually outperform all other models.

● Performance: For LR and LSTM, we obtain better Sharpe Ratios on a wide
array of portfolios (P1-P10). Returns in general were better for both LSTM and
LR compared to the model that does not use predictions. On some portfolios,
however, using the predictions does not lead to an improvement, which can be
attributed to the forecasting errors of the individual models.

● Picked Stock Properties: Stocks and eventually the portfolio constructed
using the LSTM models was more risk-averse, we observed. Linear Regression
on the other hand is aggressive in terms of the returns but also leads to higher
risks of the final constructed portfolio.

● SVR Performance: SVR based portfolios in general did not do that well.
These can be attributed to the poor predictive performance of these models,
leading to incorrect estimations of the stock behaviors. This was also observed
in the paper and our results are in accordance with them.

● Scalability of LSTM: One noteworthy thing to observe is that the LSTM based
forecasting models scales with more number of samples as well as more data.
For instance, if we get more data from twitter sentiments, market news, how a
particular industry is performing or other economic indicators, we can improve
the performance of the model by the capture of correlations between these
quantities and the stock performances. These extra data points can easily be



incorporated into the LSTM training-evaluation setup, which is highly desirable
in real world trading scenarios.

● LSTM is compute intensive: LSTM is a compute intensive model. In our
experiments, we ran 10*2=20 different LSTMs for 3000 iterations which took a
lot of time to train locally. With more samples, this time will also increase.
Thus one may need GPU-compute/servers to speed-up this process. Moreover
GPU-compute also reduces inference time of these models. In a real world
setup, one may thus need to invest in this infrastructure for better performance.

CODE
Our programs were divided into multiple files, each being quite lengthy. Thus, instead
of pasting code in the report we have attached a folder with the submission containing
all code files. Also, to maintain the flow of the report we thought that this would be in
the best interest for the us and evaluator too.

Following are the descriptions of code files:
● construct_eq.py: Construct equal-weighted portfolio from the chosen stocks of

a model
● construct_portfolio.py: Construct markowitz model portfolio from the chosen

stocks of a model
● lr_asset_selection.py: Fit linear regression model to data and pick top 4

performing stocks in terms of returns. Also plots all the metrics and predictions.
● lstm_asset_selection.py: Fit LSTM model to data and pick top 4 performing

stocks in terms of returns. Also plots all the metrics and predictions.
● svr_asset_selection.py: Fit support vector regression model to data and pick

top 4 performing stocks in terms of returns. Also plots all the metrics and
predictions.

● run_lr_train.sh: Bash script to run multiple experiments sequentially for
training Linear Regression models on 1%-10% of the data.

● run_lstm_train.sh: Bash script to run multiple experiments sequentially for
training LSTM models on 1%-10% of the data.

● run_svr_train.sh: Bash script to run multiple experiments sequentially for
training Support Vector Regression models on 1%-10% of the data.



REFERENCES
[1] LSTM : https://www.bioinf.jku.at/publications/older/2604.pdf
[2] Bayesian LSTM : https://arxiv.org/pdf/1712.08773.pdf

https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/pdf/1712.08773.pdf

