
Uncertainty estimation in Neural Networks (Group-4)

Shreyas Kowshik ∗

Roll No. : 17MA20039
Siddhant Agarwal∗
Roll No.: 17CS30035

Dewang Modi∗
Roll No.: 17CS30012

Abstract

Uncertainties in a neural network is a measure of how certain the model is in
its prediction. These can be of two types : Epistemic or model uncertainty and
aleatoric or uncertainty in the predictions. While aleatoric uncertainty is easy to
capture, it is difficult to capture epistemic uncertainty using conventional deep
learning methods and thus requires Bayesian probability theory. There are several
advantages of estimating epistemic uncertainty in sensitive real world settings like
robotics and healthcare. In this work, we shall discuss several algorithms that
obtain such uncertainty estimates, giving a detailed comparison between these.
Moreover, we will highlight the advantages of Bayesian Deep Learning algorithms
over conventional deep learning in a variety of tasks and analyse their performance.
We conclude by highlighting two real world settings where such estimates have
been used to improve the deep learning system.

1 Introduction

Deep Learning has grown tremendously over the past 10 years, leading to all sorts of applications in
domains of computer-vision, natural language processing and robotics. However, standard neural net-
work training involves minimizing the empirical risk and obtaining point estimates of the parameters
involved. A single setting of parameters is not optimal in several respects : 1). It does not take into
account overfitting as is common in MLE and MAP estimates in probabilistic machine learning. 2).
The network can have unreasonably confident predictions on unseen data, even though in reality the
network does not know what the output is. In other words, the variance of the predictive distribution
is very high.

None of the above problems can be tackled using a standard framework. Bayesian Deep Learning is
a field that brings together insights from Bayesian Statistics and combines them with deep learning.
In theory, using techniques from Bayesian Inference, one can obtain calibrated uncertainty estimates
of neural network predictions by modelling the posterior over weights of a neural network. This
addresses problem (1) given above by doing a Bayesian Posterior Averaging of the predictions and
problem (2) by introducing the uncertainty of the prediction. This has paramount importance in real
world applications. For instance, decisions made by neural networks in domains like Autonomous-
Driving, Healthcare and Finance should always have an estimate of how confident the network is in its
decisions. Moreover, such networks can also be used in reinforcement learning to aid sample-efficient
exploration.

Unfortunately, the posterior over a NN’s weights is intractable for even the simplest of practical
applications. Hence one has to resort to approximate inference techniques built on sampling or
variational inference.

In this paper, we survey multiple papers that have addressed the above problems, have built uncertainty
estimates for a model’s predictions. We show their theoretical motivation and experimental results
on standard datasets like MNIST. We conclude finally by looking at approaches that have used
uncertainty estimates in real world settings of autonomous driving and reinforcement learning.

∗All have contributed equally

CS60073, Advanced Machine Learning, 2021

2 Related Work

To prevent overfitting in neural networks, several regularization schemes have been developed. Some
of them are dropout [Srivastava et al., 2014], weight decay, early stopping, drop connect [Wan
et al., 2013]. Use of Bayesian methods can also be used to overcome overfitting and capturing
uncertainty [MacKay, 1992]. Approximation to posterior can be obtained by using MCMC methods
to get Monte Carlo approximations [Neal, 1996]. However, these methods use full dataset, which
brings the problem of scalability to large datasets. SGLD [Welling and Teh, 2011b] is based on
Langevin dynamics and performs updates using only minibatches of data [Neal et al., 2011]. Some
higher-order versions of SGLD with momentum have also become popular, such as stochastic
gradient Hamiltionian Monte Carlo (SGHMC) [Chen et al., 2014] and stochastic gradient Nose-
Hoover Thermostats (SGNHT) [Ding et al., 2014]. Variational inference [Hinton and van Camp,
1993] is an alternative to MCMC. For neural networks, stochastic variational inference[Graves,
2011] has been somewhat successful but limited by high variance in the gradients. In [Graves,
2011], the authors introduced a variational lower bound estimator for recurrent neural networks
with good results. In [Kingma and Welling, 2013], the aim was to obtain more practical estimators
using reparameterization trick which resulted in unbiased and efficient stochastic gradient-based
variational inference. Their works were oriented towards latent-variable inference.[Blundell et al.,
2015b] reported results on inference of global model parameters and also included an application to
reinforcement learning. Probabilistic backpropagation[Hernández-Lobato and Adams, 2015] is used
to infer marginal posterior probabilities, however they are unsuitable because of intractibilities in
deep neural networks.

3 Method

The goal of any classification or regression task on a dataset D is to learn the parameters or the weights
for the conditional probability p(y|x,w). Bayesian inference aims to compute the posterior distribu-
tion over the weights p(w|D). To compute the distribution of an unknown label ŷ for an unknown
input x̂, it takes the expectation under this posterior distribution as P (ŷ|x̂) = Ep(w|D)[P (ŷ|x̂, w)].
Each possible weight makes a contribution to the final prediction and their contributions are weighed
according to the posterior distribution. In other words, this expectation is similar to taking an
ensemble over infinite neural networks. Computing the posterior distribution p(w|D), given by
p(w|D) = p(D|w)p(w)

p(D) unfortunately is intractable so good approximation techniques are used to
perform bayesian inference on neural networks.

3.1 Variation Inference based approaches

Works like [Blundell et al., 2015a], [Kingma et al., 2015] have suggested the use of variational
approximation for bayesian inference on NNs. This involves learning a distribution q(w|ϕ), which is
a known distribution parameterized using ϕ, that is close enough to the posterior distribution p(w|D).
KL-Divergence is used as measure of distance between the two distributions. Naturally, the objective
is then to minimize DKL[q(w|ϕ)||p(w|D)]. The objective function L(ϕ) becomes,

L(ϕ) = DKL[q(w|ϕ)||p(w|D)]

⇒ L(ϕ) =

∫
q(w|ϕ)log

q(w|D)

p(w)p(D|w)
dw

⇒ L(ϕ) = DKL[q(w|ϕ)||p(w)]− Eq(w|ϕ)[log p(D|w)]

The first part of the objective is dependent of prior distribution p(w) and second part is the likelihood
or dependent on data.

3.1.1 Unbiased Monte-Carlo Gradients

Let ϵ be a random variable sampled from a distribution q(ϵ). The weights w are computed by
transforming this random noise using the deterministic function t(ϕ, ϵ) where ϕ is the variational
posterior parameter. The gradient of a expected value function f(w, ϕ) under q(w|ϕ) is given by,

2

δ

δϕ
Eq(w|ϕ)[f(w, ϕ)] = Eq(ϵ)

[δf(w, ϕ)
δw

δw

δϕ
+

δf(w, ϕ)

δϕ

]
(1)

Using the equation 1 and Monte-Carlo samples, the objective, f(ϕ) = log q(w|ϕ)− log p(w)p(D|w)
is optimized. This gives rise to a backpropogation like algorithm called Bayes by Backprop [Blundell
et al., 2015a] which uses unbiased gradients for the objective to learn a distribution over weights of a
neural network. The objective is approximated to f(ϕ) =

∑N
i log q(wi|ϕ)−log p(wi)−log p(D|wi)

where wi are the Monte-carlo samples drawn from the variational posterior q(w|ϕ).
If the variational posterior is assumed to be a diagonal Gaussian distribution, then the weights
can be sampled from a unit Gaussian and transformed using the deterministic function t(ϕ, ϵ)
where ϕ will consist of the mean µ and the standard deviation σ. The standard deviation is further
parameterized to σ = log (1 + exp(ρ)). Thus the variational posterior parameters are µ and ρ and
the transformation function t(ϕ, ϵ) = µ+ log (1 + exp (ρ)). The resulting algorithm is simple. First
sample ϵ ∼ N(0, I), then compute w = t(ϕ, ϵ). Next, compute the objective function f(ϕ) and
the expected gradient with respect to µ and ρ. Finally update the parameters using these gradients.
Alternately, a combination of a diagonal Gaussian posterior and a mixture of Gaussians prior can be
used i.e. p(w) = ΠjπN(wj |0, σ2

1) + (1− π)N(wj |0, σ2
2) where wj is the jth weight of the neural

network.

3.1.2 Local Reparameterization Trick

Consider the basic objective function, L(ϕ) = DKL[q(w|ϕ)||p(w)] − Eq(w|ϕ)[log p(D|w)]. Let
LD(ϕ) = Eq(w|ϕ)[log p(D|w)]. Now, L(ϕ) can be approximated by stochastic gradient variational
Bayes (SGVB), LSGV B = M

N

∑
i N log p(y(i)|x(i), w) where (x(i), y(i)) ∼ D are the datapoints in

the minibatch of size N , M is the number of minibatches.

The variance of LSGV B(ϕ) is given by,

V ar[LSGV B(ϕ)] =
M2

N2

[N∑
i=1

V ar[Li] + 2

N∑
i=1

N∑
j=i+1

Cov[Li, Lj]
]

(2)

where, Li = log p(y(i)|x(i), w).

An attempt can be made to make the Cov[Li, Lj] = 0 to reduce the variance in the objective. This
can be done by sampling different weights for each sample in the minibatch. By doing so, the
global uncertainty in the weights is translated into a form of local uncertainty that is independent
across examples and easier to sample. But, sampling separate weights for each sample can be
computationally expensive, so we can sample activations directly. This is the algorithm discussed by
[Kingma et al., 2015].

For example, lets consider a hidden layer in a standard neural network Z = XW where Z is the
pre-activation outputs, X is the input (or the output of the previous layer) and W is the weight
matrix. Each wi,j in W is specified by the variational posterior q(wi,j |ϕ) = N(µi,j , σ

2
i,j). This

means that the weights are sampled from a unit normal and transformed i.e. wi,j = µi,j + ϵi,jσ
2
i,j

where ϵi,j ∼ N(0, 1). If a separate W is sampled for every sample in the minibatch, we can
ensure that Cov[Li, Lj] = 0. But, this is computationally expensive as sampling N weight matrices
for every minibatch is tedious. The pre-activations, Z, are also normally distributed with mean
µ̂i,j =

∑
k µi,kxk,j and variance σ̂2 =

∑
k σ

2
i,kx

2
k,j and size of Z are much smaller compared to W .

So, instead of sampling W , Z is sampled from N(µ̂, σ̂2).

3.1.3 Monte Carlo Dropout

Authors in [Gal and Ghahramani, 2016] show a theoretically principled way to make sense of
dropout based neural-networks. Dropout based networks when viewed from a bayesian viewpoint
are approximately equivalent to a Deep Gaussian Process, the kernel of which depends on the
non-linearities of the given network.

More formally, let f be the output of a Neural-Network with L layers, and l(., .) be a loss function.
Denote by Wi the weight matrix of the ith layer of dimension KixKi−1 and bi be the bias parameter.

3

Let X,Y be our given dataset with inputs X and outputs Y . Dropout based neural network training
works by sampling bernoulli random variables at each layer except the final layer, multipliying these
samples with the layer values and training the resulting network on the following objective :

Ldropout =
1

N
ΣN

i=1l(yi, fi) + λΣL
i=1(||Wi||22 + ||bi||22)

The second part of the above objective is equivalent to L2-regularization. Such an interpretation puts
randomness over the layer neurons and looks at weights from a non-random perspective. However,
the same can be interpreted in terms of the weights being random.

Now consider a deep Gaussian Process with L layers, where the weights Wi are random. Denote
ω = {Wi}Li=1. Let each row of Wi distribute according according to prior p(w). The predictive
probability of such a network is given by :

p(y|x,X, Y) =

∫
p(y|x, ω)p(ω|X,Y)dω

p(y|x, ω) = N(y|f(x, ω), β−1ID)

where β is a precision parameter. The output f is composed of multiple layers, where each layer is of
the form :

oi = σ(Wiini + bi)

with inputs ini and outputs oi and σ(.) is a non-linearity. The posterior p(ω|X,Y) is intractable,
hence a variational approximation q(ω) is used for it, defined as :

Wi = Mi · diag([zi,j]Ki
j=1)

zi,j ∼ Bernoulli(pi); i = 1, · · ·L, j = 1 · · ·Ki−1

Here the variational parameters are the probabilities pi and matrices Mi. It can be shown that instead
of masking out layer neurons in dropout, one can mask out the immediately successive weight matrix
Mi and result in the same computation. Thus this transfers randomness from the layers to the weights
and views each forward pass as as sampling weights from the variational distribution. It can be
shown that [Gal] [Gal and Ghahramani, 2016] minimizing the KL-Divergence between q(ω) and
p(ω|X,Y), in certain hyperparameter settings, leads to optimizing the same objective as Ldropout.
This gives an interpretation of dropout networks as doing an approximate inference to model the
posterior.

Obtaining Model Uncertainty : The posterior predictive, approximated by the variational distribu-
tion is given by :

q(y∗|x∗) =

∫
p(y∗|x∗, ω)q(ω)dω

where ω = Wi
L
i=1. This integral can be approximated empirically by sampling T realisations of the

weights using the Bernoulli distributions, leading to a set of weights : {W t
1 , · · · ,W t

L}Tt=1. The mean
and variance of this predictive can then be given by :

Eq(y∗|x∗)(y
∗) =

1

T
ΣT

t=1f
∗(x∗,W t

1 , · · · ,W t
L)

Vq(y∗|x∗)(y∗) =
1

T
ΣT

t=1f
∗(x∗,W t

1 , · · · ,W t
L)

T f∗(x∗,W t
1 , · · · ,W t

L)

− Eq(y∗|x∗)(y
∗)TEq(y∗|x∗)(y

∗) + β−1ID

which is the sample mean of the stochastic forward passes through the network and sample variance
plus a precision term. Thus uncertainty estimates can simply be obtained by using dropout and doing
multiple forward passes through the network, and looking at the sample mean and variance.

3.2 Non-VI based approaches

The class of approaches we discuss here do not involve any variational distribution. Instead, they
introduce randomness into the optimization procedure of the network weights, which can then be
shown to converge to samples from the true posterior. Two such approaches have been presented.

4

3.2.1 Stochastic Gradient Langevin Dynamics (SGLD)

Stochastic Gradient Langevin Dynamics[Welling and Teh, 2011a] is a popular technique where
Bayesian learning can be done on large datasets by learning from small mini-batches. In this
technique, a small amount of noise is added to the standard SGD algorithm, and by annealing
appropriately, the samples will converge to true posterior. Through this transition from optimization
to sampling from posterior prevents overfitting. By injecting appropriate Gaussian noise in parameter
update rule, SGD which normally converges to maximum a posteriori mode, would instead cause
updates in such a way that the trajectory of parameters converges to posterior distribution.

MLP and MAP estimates have several issues - they cannot show uncertainty and high chances of
overfitting.

Combining ideas from SGD and Langevin dynamics gives several advantages from both of the
methods - the minibatch update rule allows for training on large-scale datasets while the addition
of Gaussian noise causes trajectory to follow posterior which helps in capturing uncertainty and
preventing overfitting.

Assume have a dataset {Xi}Ni=1. Our model parameters are θ apriori distributed according to p(θ)
and having likelihood of ΠN

i=1p(Xi|θ). The posterior is given as p(θ|X) ∝ p(θ)ΠN
i=1p(Xi|θ). We

are interested in finding the MAP estimate of this posterior. Consider that during optimization, the
parameters change at each step by a value ∆ϕt.

SGD updates using the following rule :

∆ϕt = γt

(
∇ϕ log p(ϕt) +

N

n

n∑
i=1

∇ϕ log p(dti |ϕt)
)

(3)

where {γt} is a sequence of step sizes, and Dt is a subset of n points sampled from D at current
iteration.

Gradient vectors during DNN training are obtained using the backpropagation algorithm. At test time,
the Bayesian predictive estimate for input x, is given by p(y|x,D) = Ep(ϕ|D)[p(y|x,ϕ)]. The MAP
estimate simply approximates this expectation as p(y|x,D) ≈ p(y|x,ϕMAP), ignoring parameter
uncertainty.

Instead of directly using the gradient vector to update the parameters, SGLD constructs a Gaussian
centered on the gradient vector and adding i.i.d. noise to each vector component. It thus samples ϕ
from the posterior distributions via a Markov Chain with steps:

∆ϕt ∼ N

(
γt
2

(
∇ϕ log p(ϕt) +

N

n

n∑
i=1

∇ϕ log p(dti |ϕt)
)
, γtI

)
(4)

with I denoting the identity matrix. The step sizes {γt} are decreasing, i.e., 0 < γt+1 < γt, with 1)∑∞
t=1 γt = ∞; and 2)

∑∞
t=1 γ

2
t < ∞

Given a set of samples from the update rule (4), posterior distributions can be approximated via
Monte Carlo approximations as p(y|x,D) ≈ 1

T

∑T
t=1 p(y|x,ϕt), where T is the number of samples.

[Welling and Teh, 2011a]

When the SGLD algorithm is run, initial steps are dominated by the stochastic gradient noise
because of which the algorithm behaves somewhat similar to a usual SGD algorithm. As the
algorithm progresses, the injected noise starts to dominate, and the algorithm behaves like Langevian
dynamics Metropolis Hastings algorithm. Therefore, the algorithm transitions smoothly between
them. Therefore it is important that collecting of the posterior samples is done only after the algorithm
has transitioned to Langevin dynamics phase.

Once some samples are obtained, [Welling and Teh, 2011a] show that rather than taking simple
averaging, a weighted average with weights as the step sizes should be taken which results in the
estimator having lower variance.

3.2.2 Pre-conditioned SGLD

DNNs have become increasingly common, however training them effectively is a challenge as they
have pathological curvatures and saddle points. Because of these SGLD becomes inefficient. In
normal optimization, there are several ways to overcome this problem for SGD algorithm, one of

5

which is using a preconditioning matrix. Pre-conditioned SGLD combines the two approaches
together i.e. uses a pre-conditioning matrix with SGLD.

In standard SGLD, the step size is same for all the parameters. However, it can become inefficient
when the curvatures are different for different parameters. A solution is to use a preconditioning
matrix G(ϕ) in SGLD. [Li et al., 2016] proposed to use the same preconditioner as in RMSProp. The
update rule becomes :

∆ϕt ∼
ϵt
2

[
G(ϕt)

(
∇ϕ log p(ϕt) +

N

n

n∑
i=1

∇ϕ log p(dti |ϕt)
)
+ Γ(ϕt)

]
+G

1
2 (ϕt)N (0, ϵtI)

G(ϕt+1) = diag
(
1⊘

(
λ1+

√
V (ϕt+1)

))
(5)

V (ϕt+1) = αV (ϕt) + (1− α)ḡ(ϕt;Dt)⊙ ḡ(ϕt;Dt) , (6)

where ḡ(ϕt;Dt) = 1
n

∑n
i=1 ∇ϕ log p(dti |ϕt) is the sample mean of the gradient for the mini-batch

Dt. α ∈ [0, 1] . ⊙ denotes element-wise matrix multiplication and ⊘ denotes element-wise matrix
division.

RMSprop is an extension of gradient descent that uses a decaying average of partial gradients for
adapting step size for each parameter. Gradient information is locally consistent. When the landscape
is curved, the gradients are larger than when the landscape is flat.

4 Experiments

We test the different bayesian inference techniques for both classification and regression. For
classification, we use MNIST dataset [mnist] which consists of handwritten digits. It consists of
60,000 training images and 10,000 testing images. For regression, we used data generated from a
Gaussian Process, GP (0,K) where K is an RBF kernel added with a diagonal gaussian noise.

4.1 Classification Results

Table 1 contains the classification errors on MNIST test set. The plots for the training and testing
errors with respect to the number of training epochs are shown in the Figure 1

Method Classification error Time per iter.
Baseline 0.02500 -

BBP (Gaussian Prior) 0.023500 38.437286s
BBP (GMM Prior) 0.023400 72.007019s

Local Reparam 0.025100 30.978277s
MC Dropout 0.019000 16.925309s

SGLD 0.035800 4.913495s
p-SGLD 0.033100 4.808156s

Table 1: Test set erorr rate on MNIST and Iteration times for each approach. One iteration time
involves training on a batch of data and evaluation on complete development data.

4.2 Regression Results

On learning regression models, we can directly plot the two types of uncertainties in the model. The
regression plots are shown in Figure 2. The blue region shows the epistemic uncertainty while the
yellow region shows the aleatoric uncertainty. It is evident from the plots that as one goes further
away from the training regime, the uncertainty in the predictive distribution increases, implying that
the model is not sure of what it predicts. This is the expected behavior as well.

4.3 Analysis

The following experiment was performed for analysis : A single image of a digit 3 was chosen and
it was rotated from 0-180 degrees successively by 20 degrees. At each step, the image was passed

6

Figure 1: Results for classification - error curves. Top Row (From left) : MC-Dropout, BBP (GMM
Prior), SGLD. Bottom Row (From left) : p-SGLD, Local Reparam

Figure 2: Regression Results. Yellow represents predictive uncertainty. Blue represents model
uncertainty. It is clear as we go away from training regime, uncertainty increases by thicker blue
fillings.

through the networks and the predictive probabilities were obtained including the mean and the
variance. Predictive entropies of the predictive distribution were also obtained. These have been
plotted in Figure 3. From the figures, it is clear that as the angle increases the uncertainty in the
correct class’s prediction also increases shown by the thickening of the green region. The same can
also be observed in the red region. These regions are the thinnest when the rotation angle is zero,
indicating that the network is most certain of its prediction for this image compared to the other
images. The predicted class probabilities for all the images is given in Figure 4.

Figure 3: Analysis - Correct class probability and Predictive Uncertainty along with their variances.
Top Row (From Left) : BBP (Gaussian Prior), Local Reparameterizatiion, MC-Dropout. Bottom
Row : SGLD, p-SGLD

7

Figure 4: Analysis : Variation of predictive distributions for each class by rotating a single image
by 20 degrees successively. Top-Row (From Left) : BBP (Gaussian Prior), BBP (GMM Prior),
MC-Dropout. Bottom Row (From Left) : Local Reparam, SGLD, p-SGLD.

5 Applications of Uncertainty Estimates of Neural Networks

Epistemic uncertainty or uncertainty in the model has been widely exploited be it in reinforcement
learning, control theory or computer vision [Loquercio et al., 2020]Deisenroth and Rasmussen [2011].
Over the years, researchers have widely used several ways to estimate the uncertainty in the model.
In this section, we will discuss a few applications where model uncertainty is extensively used.

5.1 Applications in Reinforcement Learning

A common use of model uncertainty is solve the exploration-exploitation trade-off. Many algorithms
still rely on ϵ-greedy exploration method which although is guaranteed converge,it does not use model
uncertainty. There are several algorithms that try to exploit epistemic uncertainty by estimating a
posterior over the expected value, for example using Bayesian linear regression [Osband et al., 2016],
[Azizzadenesheli et al., 2018b] or Bayesian neural networks [Lipton et al., 2016]. Upper Confidence
Bound or UCB is an algorithm that uses uncertainty information to deal with the exploration-
exploitation tradeoff [Auer, 2003]. It takes the action that maximizes the sum of reward’s mean and
variance.

[Blau et al., 2019] uses Bayesian Linear Regression and latent state embeddings to generate intrinsic
rewards to encourage the agent to visit new states. The work introduces a curiosity based exploration
technique that can be applied to any arbitrary RL algorithm. Using BLR, the uncertainty of the model
for arbitrary states can be computed. This uncertainty will show that the new states are dissimilar to
the already observed states.

[Azizzadenesheli et al., 2018a] introduces Bayesian Deep Q-Learning that uses Thompson’s Sampling
instead of the commonly used ϵ-greedy. Thompson’s sampling enables better exploration in high
dimensions through posterior sampling thereby greatly improving the performance. To reduce
computation costs, the authors only apply uncertainty to the final layer of the neural network
through Bayesian Linear Regression. The improvements over DQN outweigh any other improvement
techniques such as Prioritized Replay or Dueling. This shows how important better exploration
techniques are for performance of RL agents.

5.2 Uncertainty estimation for Steering Angle Prediction

Authors in [Loquercio et al., 2020] propose an uncertainty estimation procedure for steering angle
prediction in autonomous driving, given an image of the input frame. Monte Carlo Dropout is
used for obtaining the estimates. Moreover they also extend their approach to cases of already
trained networks. This has a lot of practical value since most computer vision networks are highly
sophisticated and pre-trained networks available are generally not trained keeping in mind uncertainty
calibration. The authors observe that in images that are well illumniated, the uncertainties are pretty

8

low. But in low illumination images/noisy images, the estimates go up significantly, indicating that
the network is not confident of its predictions. Such a model is of utmost importance in a fully self
driving setup if one is to deploy a neural network.

6 Conclusion

Estimating epistemic uncertainty in a neural network has a wide variety of applications. As a
result, researchers have tried to exploit various ways to compute it. One way to compute the model
uncertainty is to use bayesian inference and estimate the entire posterior distribution. But in neural
networks bayesian inference is intractable. Hence, several approximate methods have been derived
that give an estimate of the uncertainty. A common path followed by several methods is to use
variational inference to learn a variational posterior which is close to the actual posterior.

In this work, we have shown several algorithms that perform an approximate bayesian inference on
neural networks. We have analysed the uncertainty estimates for unseen samples both in classification
and regression settings. Finally, we briefly discussed some recent works that rely on the uncertainty
estimates provided by bayesian inference.

References
Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res., 3(null):

397–422, mar 2003. ISSN 1532-4435.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration through bayesian
deep q-networks. CoRR, abs/1802.04412, 2018a. URL http://arxiv.org/abs/1802.04412.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration through bayesian
deep q-networks. In 2018 Information Theory and Applications Workshop (ITA), pages 1–9, 2018b. doi:
10.1109/ITA.2018.8503252.

Tom Blau, Lionel Ott, and Fabio Ramos. Bayesian curiosity for efficient exploration in reinforcement learning.
CoRR, abs/1911.08701, 2019. URL http://arxiv.org/abs/1911.08701.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks, 2015a.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International Conference on Machine Learning, pages 1613–1622. PMLR, 2015b.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In International
conference on machine learning, pages 1683–1691. PMLR, 2014.

Marc Deisenroth and Carl Rasmussen. Pilco: A model-based and data-efficient approach to policy search. pages
465–472, 01 2011.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut Neven.
Bayesian sampling using stochastic gradient thermostats. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
21fe5b8ba755eeaece7a450849876228-Paper.pdf.

Yarin Gal. Uncertainty in deep learning.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 1050–1059. JMLR.org, 2016.

Alex Graves. Practical variational inference for neural networks. Advances in neural information processing
systems, 24, 2011.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning of bayesian
neural networks. In International conference on machine learning, pages 1861–1869. PMLR, 2015.

Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple by minimizing the description
length of the weights. In Proceedings of the Sixth Annual Conference on Computational Learning Theory,
COLT ’93, page 5–13, New York, NY, USA, 1993. Association for Computing Machinery. ISBN 0897916115.
doi: 10.1145/168304.168306. URL https://doi.org/10.1145/168304.168306.

9

http://arxiv.org/abs/1802.04412
http://arxiv.org/abs/1911.08701
https://proceedings.neurips.cc/paper/2014/file/21fe5b8ba755eeaece7a450849876228-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/21fe5b8ba755eeaece7a450849876228-Paper.pdf
https://doi.org/10.1145/168304.168306

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization trick,
2015.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic gradient langevin
dynamics for deep neural networks. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Zachary C. Lipton, Jianfeng Gao, Lihong Li, Xiujun Li, Faisal Ahmed, and Li Deng. Efficient exploration for
dialog policy learning with deep BBQ networks \& replay buffer spiking. CoRR, abs/1608.05081, 2016. URL
http://arxiv.org/abs/1608.05081.

Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A general framework for uncertainty estimation in
deep learning. IEEE Robotics and Automation Letters, PP:1–1, 02 2020. doi: 10.1109/LRA.2020.2974682.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural Comput., 4(3):
448–472, may 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.448. URL https://doi.org/10.
1162/neco.1992.4.3.448.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg, 1996. ISBN
0387947248.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo, 2(11):2,
2011.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions,
2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):
1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural networks using
dropconnect. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages 1058–
1066, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/
wan13.html.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learning (ICML-11), pages 681–688. Citeseer, 2011a.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings
of the 28th International Conference on International Conference on Machine Learning, ICML’11, page
681–688, Madison, WI, USA, 2011b. Omnipress. ISBN 9781450306195.

10

http://arxiv.org/abs/1608.05081
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.mlr.press/v28/wan13.html
https://proceedings.mlr.press/v28/wan13.html

	Introduction
	Related Work
	Method
	Variation Inference based approaches
	Unbiased Monte-Carlo Gradients
	Local Reparameterization Trick
	Monte Carlo Dropout

	Non-VI based approaches
	Stochastic Gradient Langevin Dynamics (SGLD)
	Pre-conditioned SGLD

	Experiments
	Classification Results
	Regression Results
	Analysis

	Applications of Uncertainty Estimates of Neural Networks
	Applications in Reinforcement Learning
	Uncertainty estimation for Steering Angle Prediction

	Conclusion

